Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/42252
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | AMINI, Sasan | - |
dc.contributor.author | VAN NIEUWENHUYSE, Inneke | - |
dc.date.accessioned | 2024-01-26T16:40:59Z | - |
dc.date.available | 2024-01-26T16:40:59Z | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2024-01-14T18:47:40Z | - |
dc.identifier.citation | Sellmann, Meinolf; Tierney, Kevin (Ed.). Learning and Intelligent Optimization 17th International Conference, LION 17, Nice, France, June 4–8, 2023, Revised Selected Papers, Springer, p. 78 -91 | - |
dc.identifier.isbn | 9783031445040 | - |
dc.identifier.isbn | 9783031445057 | - |
dc.identifier.issn | 0302-9743 | - |
dc.identifier.issn | 1611-3349 | - |
dc.identifier.uri | http://hdl.handle.net/1942/42252 | - |
dc.description.abstract | In this research, we develop a Bayesian optimization algorithm to solve expensive, constrained problems. We consider the presence of heteroscedastic noise in the evaluations and thus propose a new acquisition function to account for this noise in the search for the optimal point. We use stochastic kriging to fit the metamodels, and we provide computational results to highlight the importance of accounting for the heteroscedastic noise in the search for the optimal solution. Finally, we propose some promising directions for further research. | - |
dc.language.iso | en | - |
dc.publisher | Springer | - |
dc.relation.ispartofseries | Lecture Notes in Computer Science | - |
dc.subject.other | Bayesian optimization | - |
dc.subject.other | Constrained problems | - |
dc.subject.other | Heteroscedastic noise | - |
dc.subject.other | Stochastic Kriging | - |
dc.subject.other | Barrier function | - |
dc.title | A Bayesian Optimization Algorithm for Constrained Simulation Optimization Problems with Heteroscedastic Noise | - |
dc.type | Proceedings Paper | - |
dc.relation.edition | 1 | - |
local.bibliographicCitation.authors | Sellmann, Meinolf | - |
local.bibliographicCitation.authors | Tierney, Kevin | - |
local.bibliographicCitation.conferencedate | June 4–8, 2023 | - |
local.bibliographicCitation.conferencename | 17th International Conference, LION 17 | - |
local.bibliographicCitation.conferenceplace | Nice, France | - |
dc.identifier.epage | 91 | - |
dc.identifier.spage | 78 | - |
dc.identifier.volume | 14286 | - |
local.bibliographicCitation.jcat | C1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
local.relation.ispartofseriesnr | 14286 | - |
dc.identifier.doi | 10.1007/978-3-031-44505-7_6 | - |
local.provider.type | CrossRef | - |
local.bibliographicCitation.btitle | Learning and Intelligent Optimization 17th International Conference, LION 17, Nice, France, June 4–8, 2023, Revised Selected Papers | - |
local.uhasselt.international | no | - |
item.fulltext | With Fulltext | - |
item.fullcitation | AMINI, Sasan & VAN NIEUWENHUYSE, Inneke (2023) A Bayesian Optimization Algorithm for Constrained Simulation Optimization Problems with Heteroscedastic Noise. In: Sellmann, Meinolf; Tierney, Kevin (Ed.). Learning and Intelligent Optimization 17th International Conference, LION 17, Nice, France, June 4–8, 2023, Revised Selected Papers, Springer, p. 78 -91. | - |
item.validation | vabb 2025 | - |
item.accessRights | Open Access | - |
item.contributor | AMINI, Sasan | - |
item.contributor | VAN NIEUWENHUYSE, Inneke | - |
crisitem.journal.issn | 0302-9743 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
8144_20240126172552.pdf Restricted Access | Published version | 765.31 kB | Adobe PDF | View/Open Request a copy |
LION_22_Constrained (1).pdf | Peer-reviewed author version | 1.44 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.