Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/42252
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAMINI, Sasan-
dc.contributor.authorVAN NIEUWENHUYSE, Inneke-
dc.date.accessioned2024-01-26T16:40:59Z-
dc.date.available2024-01-26T16:40:59Z-
dc.date.issued2023-
dc.date.submitted2024-01-14T18:47:40Z-
dc.identifier.citationSellmann, Meinolf; Tierney, Kevin (Ed.). Learning and Intelligent Optimization 17th International Conference, LION 17, Nice, France, June 4–8, 2023, Revised Selected Papers, Springer, p. 78 -91-
dc.identifier.isbn9783031445040-
dc.identifier.isbn9783031445057-
dc.identifier.issn0302-9743-
dc.identifier.issn1611-3349-
dc.identifier.urihttp://hdl.handle.net/1942/42252-
dc.description.abstractIn this research, we develop a Bayesian optimization algorithm to solve expensive, constrained problems. We consider the presence of heteroscedastic noise in the evaluations and thus propose a new acquisition function to account for this noise in the search for the optimal point. We use stochastic kriging to fit the metamodels, and we provide computational results to highlight the importance of accounting for the heteroscedastic noise in the search for the optimal solution. Finally, we propose some promising directions for further research.-
dc.language.isoen-
dc.publisherSpringer-
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.subject.otherBayesian optimization-
dc.subject.otherConstrained problems-
dc.subject.otherHeteroscedastic noise-
dc.subject.otherStochastic Kriging-
dc.subject.otherBarrier function-
dc.titleA Bayesian Optimization Algorithm for Constrained Simulation Optimization Problems with Heteroscedastic Noise-
dc.typeProceedings Paper-
dc.relation.edition1-
local.bibliographicCitation.authorsSellmann, Meinolf-
local.bibliographicCitation.authorsTierney, Kevin-
local.bibliographicCitation.conferencedateJune 4–8, 2023-
local.bibliographicCitation.conferencename17th International Conference, LION 17-
local.bibliographicCitation.conferenceplaceNice, France-
dc.identifier.epage91-
dc.identifier.spage78-
dc.identifier.volume14286-
local.bibliographicCitation.jcatC1-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnr14286-
dc.identifier.doi10.1007/978-3-031-44505-7_6-
local.provider.typeCrossRef-
local.bibliographicCitation.btitleLearning and Intelligent Optimization 17th International Conference, LION 17, Nice, France, June 4–8, 2023, Revised Selected Papers-
local.uhasselt.internationalno-
item.fulltextWith Fulltext-
item.fullcitationAMINI, Sasan & VAN NIEUWENHUYSE, Inneke (2023) A Bayesian Optimization Algorithm for Constrained Simulation Optimization Problems with Heteroscedastic Noise. In: Sellmann, Meinolf; Tierney, Kevin (Ed.). Learning and Intelligent Optimization 17th International Conference, LION 17, Nice, France, June 4–8, 2023, Revised Selected Papers, Springer, p. 78 -91.-
item.validationvabb 2025-
item.accessRightsOpen Access-
item.contributorAMINI, Sasan-
item.contributorVAN NIEUWENHUYSE, Inneke-
crisitem.journal.issn0302-9743-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
8144_20240126172552.pdf
  Restricted Access
Published version765.31 kBAdobe PDFView/Open    Request a copy
LION_22_Constrained (1).pdfPeer-reviewed author version1.44 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.