Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/42364
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTHEODOSIOU, Eleni-
dc.contributor.authorSCHUETZ, Jochen-
dc.contributor.authorSeal, David-
dc.date.accessioned2024-02-09T13:13:46Z-
dc.date.available2024-02-09T13:13:46Z-
dc.date.issued2024-
dc.date.submitted2024-02-02T06:52:15Z-
dc.identifier.citationCOMPUTERS & MATHEMATICS WITH APPLICATIONS, 158 , p. 139 -149-
dc.identifier.issn0898-1221-
dc.identifier.urihttp://hdl.handle.net/1942/42364-
dc.description.abstractIn the last decade, multi-derivative schemes for ordinary differential equations (ODE), i.e., schemes not only using the ODE's flux, but also derivatives thereof, have seen renewed interest in various applications. In [Schütz and Seal, Applied Numerical Mathematics, 160, 2021], the authors have introduced a two-derivative method for applications where a clear distinction can be made between stiff (to be treated implicitly) and non-stiff parts (to be treated explicitly); they hence obtained a two-derivative IMEX (im-plicit/explicit) scheme. In many applications, it is important that the non-stiff part is only treated explicitly. Think, e.g., of applications where the non-stiff part contains all the nonlinearities and should for efficiency reasons hence only be treated explicitly. However, this non-stiff part showed up in the second derivative of the stiff term and was hence treated implicitly as well. In this work, we further develop the algorithm from Schütz and Seal in such a way that the explicit part will be treated explicitly only. We define the algorithm, show that it preserves the asymptotic behavior of certain stiff equations, and investigate it numerically. We found that the modification we make has no negative effect on the convergence behavior of the scheme.-
dc.description.sponsorshipE. Theodosiou was funded by the Fonds voor Wetenschappelijk Onderzoek (FWO, Belgium) - project no. G052419N.-
dc.language.isoen-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.rights2024 Elsevier Ltd. All rights reserved-
dc.subject.otherIMEX-
dc.subject.otherMultiderivative method-
dc.titleAn explicitness-preserving IMEX-split multiderivative method-
dc.typeJournal Contribution-
dc.identifier.epage149-
dc.identifier.spage139-
dc.identifier.volume158-
local.bibliographicCitation.jcatA1-
dc.description.notesSchütz, J (corresponding author), Hasselt Univ, Fac Sci, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.; Schütz, J (corresponding author), Hasselt Univ, Data Sci Inst, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.-
local.publisher.placeTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.camwa.2023.12.040-
dc.identifier.isi001171051200001-
dc.identifier.eissn1873-7668-
local.provider.typePdf-
local.description.affiliation[Theodosiou, Eleni; Schutz, Jochen; Seal, David] Hasselt Univ, Fac Sci, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Theodosiou, Eleni; Schutz, Jochen] Hasselt Univ, Data Sci Inst, Agoralaan Gebouw D, B-3590 Diepenbeek, Belgium.-
local.uhasselt.internationalno-
item.fullcitationTHEODOSIOU, Eleni; SCHUETZ, Jochen & Seal, David (2024) An explicitness-preserving IMEX-split multiderivative method. In: COMPUTERS & MATHEMATICS WITH APPLICATIONS, 158 , p. 139 -149.-
item.fulltextWith Fulltext-
item.contributorTHEODOSIOU, Eleni-
item.contributorSCHUETZ, Jochen-
item.contributorSeal, David-
item.accessRightsRestricted Access-
crisitem.journal.issn0898-1221-
crisitem.journal.eissn1873-7668-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
main.pdfNon Peer-reviewed author version741.11 kBAdobe PDFView/Open
1-s2.0-S089812212400021X-main.pdf
  Restricted Access
Published version728.21 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.