Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/42845
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | SIMONS, Mattias | - |
dc.contributor.author | De Schepper, David | - |
dc.contributor.author | Demeester, Eric | - |
dc.contributor.author | SCHROEYERS, Wouter | - |
dc.date.accessioned | 2024-05-03T15:09:20Z | - |
dc.date.available | 2024-05-03T15:09:20Z | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-04-10T11:59:46Z | - |
dc.identifier.citation | Nuclear Engineering and Technology, 56 (8), p. 3188-3198 | - |
dc.identifier.issn | 1738-5733 | - |
dc.identifier.uri | http://hdl.handle.net/1942/42845 | - |
dc.description.abstract | Efficient and secure decommissioning of nuclear facilities demands advanced technologies. In this context, gamma-ray detection and imaging are crucial in identifying radioactive hotspots and monitoring radiation levels. Our study is dedicated to developing a gamma-ray detection system tailored for integration into robotic platforms for nuclear decommissioning, offering a safe and automated solution for this intricate task and ensuring the safety of human operators by mitigating radiation exposure and streamlining hotspot localization. Our approach integrates a Compton camera based 3D reconstruction algorithm with a single Timepix3 detector. This eliminates the need for a second detector and significantly reduces system weight and cost. Additionally , combining a 3D camera with the setup enhances hotspot visualization and interpretation, rendering it an ideal solution for practical nuclear decommissioning applications. In a proof-of-concept measurement utilizing a 137Cs source, our system accurately localized and visualized the source in 3D with an angular error of 1 • and estimated the activity with a 3% relative error. This promising result underscores the system's potential for deployment in real-world decommissioning settings. Future endeavors will expand the technology's applications in authentic decommissioning scenarios and optimize its integration with robotic platforms. The outcomes of our study contribute to heightened safety and accuracy for nuclear decommissioning works through the advancement of cost-effective and efficient gamma-ray detection systems. | - |
dc.description.sponsorship | This work was also supported by the Research Foundation - Flanders (FWO) scholarship nr 1SA2621N and 1SA2623N hosted by University Hasselt. The computational resources and services used in this work were provided by the VSC (Flemish Supercomputer Center), funded by the Research Foundation - Flanders (FWO) and the Flemish Government. This research was performed in the context of the Archer project. The Archer project was carried out by academic research partners UHasselt and KU Leuven in collaboration with the industrial partners EQUANS and Magics Instruments. This project is funded by the Energy Transition Fund of the FOD economy (federal government Belgium). The publication exclusively contains the opinions of the authors. The General Directorate Energy is not liable for any use of the information in the current paper. | - |
dc.language.iso | en | - |
dc.publisher | Korean Nuclear Society | - |
dc.rights | 2024 Korean Nuclear Society. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). | - |
dc.subject.other | Compton imaging | - |
dc.subject.other | Gamma camera | - |
dc.subject.other | Decommissioning | - |
dc.subject.other | Timepix3 | - |
dc.title | Localization of hotspots via a lightweight system combining Compton imaging with a 3D lidar camera | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 3198 | - |
dc.identifier.issue | 8 | - |
dc.identifier.spage | 3188 | - |
dc.identifier.volume | 56 | - |
local.format.pages | 11 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Simons, M (corresponding author), Uhasselt Hasselt Univ, Nucl Technol Fac Engn Technol, CMK, NuTeC, B-3590 Diepenbeek, Belgium. | - |
dc.description.notes | mattias.simons@uhasselt.be | - |
local.publisher.place | NUTOPIA BLDG, 342-1 JANGDAE-DONG, DAEJEON 305-308, SOUTH KOREA | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.type.programme | VSC | - |
dc.identifier.doi | 10.1016/j.net.2024.03.020 | - |
dc.identifier.isi | 001273285600001 | - |
dc.identifier.eissn | 1738-5733 | - |
local.provider.type | CrossRef | - |
local.description.affiliation | [Simons, Mattias; Schroeyers, Wouter] Uhasselt Hasselt Univ, Nucl Technol Fac Engn Technol, CMK, NuTeC, B-3590 Diepenbeek, Belgium. | - |
local.description.affiliation | [De Schepper, David; Demeester, Eric] Katholieke Univ Leuven, Dept Mech Engn, ACRO, Wetenschapspk 27, B-3590 Diepenbeek, Belgium. | - |
local.description.affiliation | [De Schepper, David; Demeester, Eric] Katholieke Univ Leuven, Core Lab ROB, Flanders Make, Leuven, Belgium. | - |
local.uhasselt.international | no | - |
item.fulltext | With Fulltext | - |
item.accessRights | Open Access | - |
item.contributor | SIMONS, Mattias | - |
item.contributor | De Schepper, David | - |
item.contributor | Demeester, Eric | - |
item.contributor | SCHROEYERS, Wouter | - |
item.fullcitation | SIMONS, Mattias; De Schepper, David; Demeester, Eric & SCHROEYERS, Wouter (2024) Localization of hotspots via a lightweight system combining Compton imaging with a 3D lidar camera. In: Nuclear Engineering and Technology, 56 (8), p. 3188-3198. | - |
crisitem.journal.issn | 1738-5733 | - |
crisitem.journal.eissn | 1738-5733 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Localization of hotspots via a lightweight system combining Compton imaging with a 3D lidar camera.pdf | Published version | 5.68 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.