Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/42876
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Torres, Jeamichel | - |
dc.contributor.author | Codorniu, Rafael | - |
dc.contributor.author | Baracaldo, Rene | - |
dc.contributor.author | Sariol, Harold | - |
dc.contributor.author | Peacok, Thayset | - |
dc.contributor.author | YPERMAN, Jan | - |
dc.contributor.author | ADRIAENSENS, Peter | - |
dc.contributor.author | CARLEER, Robert | - |
dc.contributor.author | Sauvanell, Ángel | - |
dc.date.accessioned | 2024-05-06T15:19:02Z | - |
dc.date.available | 2024-05-06T15:19:02Z | - |
dc.date.issued | 2020 | - |
dc.date.submitted | 2024-04-15T13:00:09Z | - |
dc.identifier.citation | SN Applied Sciences, 2 (12) (Art N° 2088) | - |
dc.identifier.uri | http://hdl.handle.net/1942/42876 | - |
dc.description.abstract | X-ray methods have proven to be reliable, accurate and sensitive techniques to study activated carbons. The studying of granular activated carbon (GAC) samples through X-ray digital radiographic images using Deep Learning, more specifically convolutional neural networks (CNN) class of model, has been explored. Results were compared to hand-engineered characterization using X-Ray absorption method (XRA). It was proved that CNNs represent a fast and reliable analytical tool for indirect information on the chemical and physical characteristics of GACs. The proposed method opens possibilities for the application of Deep Learning based models on radiographic images for the characterization and comparison of exhausted and virgin porous materials. | - |
dc.language.iso | en | - |
dc.publisher | - | |
dc.subject.other | Deep learning | - |
dc.subject.other | Neural network | - |
dc.subject.other | Activated carbon | - |
dc.subject.other | XRA | - |
dc.subject.other | Digital image processing | - |
dc.title | A convolutional neural networks approach using X-Ray absorption images for studying granular activated carbon | - |
dc.type | Journal Contribution | - |
dc.identifier.issue | 12 | - |
dc.identifier.volume | 2 | - |
local.bibliographicCitation.jcat | A1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.artnr | 2088 | - |
dc.identifier.doi | 10.1007/s42452-020-03835-3 | - |
dc.identifier.isi | WOS:000594417300005 | - |
local.provider.type | - | |
local.uhasselt.international | yes | - |
item.fulltext | With Fulltext | - |
item.contributor | Torres, Jeamichel | - |
item.contributor | Codorniu, Rafael | - |
item.contributor | Baracaldo, Rene | - |
item.contributor | Sariol, Harold | - |
item.contributor | Peacok, Thayset | - |
item.contributor | YPERMAN, Jan | - |
item.contributor | ADRIAENSENS, Peter | - |
item.contributor | CARLEER, Robert | - |
item.contributor | Sauvanell, Ángel | - |
item.fullcitation | Torres, Jeamichel; Codorniu, Rafael; Baracaldo, Rene; Sariol, Harold; Peacok, Thayset; YPERMAN, Jan; ADRIAENSENS, Peter; CARLEER, Robert & Sauvanell, Ángel (2020) A convolutional neural networks approach using X-Ray absorption images for studying granular activated carbon. In: SN Applied Sciences, 2 (12) (Art N° 2088). | - |
item.accessRights | Open Access | - |
crisitem.journal.issn | 2523-3963 | - |
crisitem.journal.eissn | 2523-3971 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
(3) A convolutional neural networks approach using X-Ray absorption.pdf | Published version | 4.72 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.