Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/42890
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchyvens, An -Marie-
dc.contributor.authorVan Oost, Nina Catharina-
dc.contributor.authorAerts, Jean-Marie-
dc.contributor.authorMasci, Federica-
dc.contributor.authorPETERS, Brent-
dc.contributor.authorNEVEN, An-
dc.contributor.authorDIRIX, Hélène-
dc.contributor.authorWETS, Geert-
dc.contributor.authorROSS, Veerle-
dc.contributor.authorVerbraecken, Johan-
dc.date.accessioned2024-05-08T11:36:52Z-
dc.date.available2024-05-08T11:36:52Z-
dc.date.issued2024-
dc.date.submitted2024-05-08T11:05:57Z-
dc.identifier.citationJMIR mHealth and uHealth, 12 (Art N° e52192)-
dc.identifier.urihttp://hdl.handle.net/1942/42890-
dc.description.abstractBackground: Despite being the gold -standard method for objectively assessing sleep, polysomnography (PSG) faces several limitations as it is expensive, time-consuming, and labor-intensive; requires various equipment and technical expertise; and is impractical for long-term or in -home use. Consumer wrist -worn wearables are able to monitor sleep parameters and thus could be used as an alternative for PSG. Consequently, wearables gained immense popularity over the past few years, but their accuracy has been a major concern. Objective: A systematic review of the literature was conducted to appraise the performance of 3 recent -generation wearable devices (Fitbit Charge 4, Garmin Vivosmart 4, and WHOOP) in determining sleep parameters and sleep stages. Methods: Per the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta -Analyses) statement, a comprehensive search was conducted using the PubMed, Web of Science, Google Scholar, Scopus, and Embase databases. Eligible publications were those that (1) involved the validity of sleep data of any marketed model of the candidate wearables and (2) used PSG or an ambulatory electroencephalogram monitor as a reference sleep monitoring device. Exclusion criteria were as follows: (1) incorporated a sleep diary or survey method as a reference, (2) review paper, (3) children as participants, and (4) duplicate publication of the same data and findings. Results: The search yielded 504 candidate articles. After eliminating duplicates and applying the eligibility criteria, 8 articles were included. WHOOP showed the least disagreement relative to PSG and Sleep Profiler for total sleep time (-1.4 min), light sleep (-9.6 min), and deep sleep (-9.3 min) but showed the largest disagreement for rapid eye movement (REM) sleep (21.0 min). Fitbit Charge 4 and Garmin Vivosmart 4 both showed moderate accuracy in assessing sleep stages and total sleep time compared to PSG. Fitbit Charge 4 showed the least disagreement for REM sleep (4.0 min) relative to PSG. Additionally, Fitbit Charge 4 showed higher sensitivities to deep sleep (75%) and REM sleep (86.5%) compared to Garmin Vivosmart 4 and WHOOP. Conclusions: The findings of this systematic literature review indicate that the devices with higher relative agreement and sensitivities to multistate sleep (ie, Fitbit Charge 4 and WHOOP) seem appropriate for deriving suitable estimates of sleep parameters. However, analyses regarding the multistate categorization of sleep indicate that all devices can benefit from further improvement in the assessment of specific sleep stages. Although providers are continuously developing new versions and variants of wearables, the scientific research on these wearables remains considerably limited. This scarcity in literature not only reduces our ability to draw definitive conclusions but also highlights the need for more targeted research in this domain. Additionally, future research endeavors should strive for standardized protocols including larger sample sizes to enhance the comparability and power of the results across studies.-
dc.description.sponsorshipThis work was supported by Flanders Innovation & Entrepreneurship - VLAIO (Vlaams Agentschap Innoveren & Ondernemen; HBC.2021.0387).-
dc.language.isoen-
dc.publisherJMIR PUBLICATIONS, INC-
dc.rightsAn-Marie Schyvens, Nina Catharina Van Oost, Jean-Marie Aerts, Federica Masci, Brent Peters, An Neven, Hélène Dirix, Geert Wets, Veerle Ross, Johan Verbraecken. Originally published in JMIR mHealth and uHealth (https://mhealth.jmir.org), 27.03.2024. This is an open-access article distributed under the terms of the Creative Commons Attribution License (https:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mHealth and uHealth, is properly cited. The complete bibliographic information, a link to the original publication on https://mhealth.jmir.org/, as well as this copyright and license information must be included.-
dc.subject.othersleep-
dc.subject.otherwearable device-
dc.subject.othervalidation-
dc.subject.otherpolysomnography-
dc.subject.otherassessing sleep-
dc.subject.otherPRISMA-
dc.subject.otherPreferred Reporting Items for Systematic Reviews and Meta-Analyses-
dc.titleAccuracy of Fitbit Charge 4, Garmin Vivosmart 4, and WHOOP Versus Polysomnography: Systematic Review-
dc.typeJournal Contribution-
dc.identifier.volume12-
local.format.pages11-
local.bibliographicCitation.jcatA1-
dc.description.notesSchyvens, AM (corresponding author), Antwerp Univ Hosp, Multidisciplinary Sleep Disorders Ctr, Drie Eikenstraat 655, B-2650 Edegem, Belgium.-
dc.description.notesan-marie.schyvens@uantwerpen.be-
local.publisher.place130 QUEENS QUAY East, Unit 1100, TORONTO, ON M5A 0P6, CANADA-
local.type.refereedRefereed-
local.type.specifiedReview-
local.bibliographicCitation.artnre52192-
dc.identifier.doi10.2196/52192-
dc.identifier.pmid38557808-
dc.identifier.isi001198570800001-
dc.contributor.orcidSchyvens, An-Marie/0000-0001-6030-475X; Neven, An/0000-0003-0165-1799;-
dc.contributor.orcidPETERS, Brent/0000-0002-3234-5607; Dirix, Helene/0000-0001-7652-1070-
local.provider.typewosris-
local.description.affiliation[Schyvens, An -Marie; Verbraecken, Johan] Antwerp Univ Hosp, Multidisciplinary Sleep Disorders Ctr, Edegem, Belgium.-
local.description.affiliation[Schyvens, An -Marie; Verbraecken, Johan] Univ Antwerp, Lab Expt Med & Pediat, Antwerp, Belgium.-
local.description.affiliation[Van Oost, Nina Catharina; Aerts, Jean-Marie; Masci, Federica] Dept Biosyst, KU Leuven, Leuven, Belgium.-
local.description.affiliation[Peters, Brent; Neven, An; Dirix, Helene; Wets, Geert; Ross, Veerle] Transportat Res Inst IMOB, Sch Transportat Sci, UHasselt, Hasselt, Belgium.-
local.description.affiliation[Ross, Veerle] Evidence Based Psychol Ctr, Faresa, Hasselt, Belgium.-
local.description.affiliation[Schyvens, An -Marie] Antwerp Univ Hosp, Multidisciplinary Sleep Disorders Ctr, Drie Eikenstraat 655, B-2650 Edegem, Belgium.-
local.uhasselt.internationalno-
item.accessRightsOpen Access-
item.fullcitationSchyvens, An -Marie; Van Oost, Nina Catharina; Aerts, Jean-Marie; Masci, Federica; PETERS, Brent; NEVEN, An; DIRIX, Hélène; WETS, Geert; ROSS, Veerle & Verbraecken, Johan (2024) Accuracy of Fitbit Charge 4, Garmin Vivosmart 4, and WHOOP Versus Polysomnography: Systematic Review. In: JMIR mHealth and uHealth, 12 (Art N° e52192).-
item.fulltextWith Fulltext-
item.contributorSchyvens, An -Marie-
item.contributorVan Oost, Nina Catharina-
item.contributorAerts, Jean-Marie-
item.contributorMasci, Federica-
item.contributorPETERS, Brent-
item.contributorNEVEN, An-
item.contributorDIRIX, Hélène-
item.contributorWETS, Geert-
item.contributorROSS, Veerle-
item.contributorVerbraecken, Johan-
crisitem.journal.issn2291-5222-
crisitem.journal.eissn2291-5222-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
PDF.pdfPublished version395.6 kBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.