Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/42980
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDrikvandi, Reza-
dc.contributor.authorVERBEKE, Geert-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2024-05-22T08:10:25Z-
dc.date.available2024-05-22T08:10:25Z-
dc.date.issued2024-
dc.date.submitted2024-05-15T09:39:23Z-
dc.identifier.citationAnnals of Applied Statistics, 18 (2) , p. 1618 -1641-
dc.identifier.urihttp://hdl.handle.net/1942/42980-
dc.description.abstractStandard models for longitudinal data ignore the stochastic nature of time-varying covariates and their stochastic evolution over time by treating them as fixed variables. There have been recent methods for modelling timevarying covariates; however, those methods cannot be applied to analyse longitudinal data when the longitudinal response and the time-varying covariates for each subject are measured at different time points. Moreover, it is difficult to study the temporal effects of a time-varying covariate on the longitudinal response and the temporal correlation between them. Motivated by data from an AIDS cohort study conducted over 26 years at the University Hospitals Leuven in which the measurements on the CD4 cell count and viral load for patients are not taken at the same time point, we present a framework to address those challenges by using joint multivariate mixed models to jointly model time-varying covariates and a longitudinal response, instead of including time-varying covariates in the response model. This approach also has the advantage that one can study the association between the covariate at any time point and the response at any other time point without having to explicitly model the conditional distribution of the response given the covariate. We use penalised spline functions of time to capture the evolutions of both the response and time-varying covariates over time.-
dc.language.isoen-
dc.publisherINST MATHEMATICAL STATISTICS-IMS-
dc.subject.otherAIDS cohort study-
dc.subject.otherAIDS cohort study-
dc.subject.otherjoint mixed model-
dc.subject.otherJoint mixed model-
dc.subject.otherLongitudinal data-
dc.subject.otherlongitudinal data-
dc.subject.othertemporal association-
dc.subject.otherTemporal association-
dc.subject.otherTime-varying covariate-
dc.subject.othertime- varying covariate-
dc.titleA framework for analysing longitudinal data involving time-varying covariates-
dc.typeJournal Contribution-
dc.identifier.epage1641-
dc.identifier.issue2-
dc.identifier.spage1618-
dc.identifier.volume18-
local.format.pages24-
local.bibliographicCitation.jcatA1-
dc.description.notesDrikvandi, R (corresponding author), Univ Durham, Dept Math Sci, Durham, England.-
dc.description.notesreza.drikvandi@durham.ac.uk; geert.verbeke@kuleuven.be;-
dc.description.notesgeert.verbeke@kuleuven.be-
local.publisher.place3163 SOMERSET DR, CLEVELAND, OH 44122 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1214/23-AOAS1851-
dc.identifier.isi001202404100010-
local.provider.typewosris-
local.description.affiliation[Drikvandi, Reza] Univ Durham, Dept Math Sci, Durham, England.-
local.description.affiliation[Verbeke, Geert] Katholieke Univ Leuven, I BioStat, Leuven, Belgium.-
local.description.affiliation[Molenberghs, Geert] Univ Hasselt, I BioStat, Hasselt, Belgium.-
local.uhasselt.internationalyes-
item.contributorDrikvandi, Reza-
item.contributorVERBEKE, Geert-
item.contributorMOLENBERGHS, Geert-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
item.fullcitationDrikvandi, Reza; VERBEKE, Geert & MOLENBERGHS, Geert (2024) A framework for analysing longitudinal data involving time-varying covariates. In: Annals of Applied Statistics, 18 (2) , p. 1618 -1641.-
crisitem.journal.issn1932-6157-
crisitem.journal.eissn1941-7330-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
2186204AAM.pdfPeer-reviewed author version2.19 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.