Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/43133
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorManca, Jean-
dc.contributor.advisorCleuren, Bart-
dc.contributor.authorWOUTERS, Koen-
dc.date.accessioned2024-06-13T09:32:02Z-
dc.date.available2024-06-13T09:32:02Z-
dc.date.issued2024-
dc.date.submitted2024-05-23T11:13:41Z-
dc.identifier.urihttp://hdl.handle.net/1942/43133-
dc.description.abstractIn modern times, electrical devices have become ingrained with our society. These devices form a major role in communication, leisure and even survival. However, as these devices break and get replaced by newer versions, over 50 million tonnes of electronic waste that is not recycled is generated yearly. Whilst in the long run this will undoubtedly have ecological consequences, in developing countries this already forms a threat to the health of adults and children, even before birth. As the global demand for electronics seems to be ever increasing, it is evident that biodegradable alternatives need to be found. Approximately a decade ago, at the coast of Denmark, long filamentous bacteria were discovered that were found to conduct electricity over centimetre scale distances. The research in this thesis aims to gain more insight into the conductive properties of these bacteria and study the potential of these bacteria to be used as alternatives to the non-biodegradable wires in electronic circuits. The basics of electron transport are well-known for crystalline materials and can be used to create electronic devices, and various models exist for non-crystalline materials (chapter 1.1). Meanwhile, whilst properties such as structure, metabolism and respiration have commonalities in various bacteria (chapter 1.2), some break the mould by bringing electrons out of the cell for their respiration (chapter 1.3). Cable bacteria go one step further by forming chains of tens of thousands of cells that work together to survive (chapter 1.4). These chains transport electrons through wires that are interconnected between the cells. This way, these bacteria thrive in the sediment by stretching out between sulphide in the bottom layers and oxygen at the top. In order to gain more insight into the charge transport properties of cable bacteria, various techniques were employed in this thesis (chapter 2). Through direct conductivity measurements it was found that various electrodes can be used in order to attach the bacteria in a circuit. However, the conductivity of these bacteria decreases under exposure to ambient air and light. Meanwhile, fluorescence microscopy revealed autofluorescence in these bacteria. Nanoscale electronic measurements are used to gain more insights into the connecting structures between the fibres of the bacteria. Finally, using mass spectrometry on different strains of cable bacteria, it was found that nickel and sulphur are common elements in the conductive fibres of these bacteria. How do cable bacteria compare to other biodegradable alternatives for electronics that have been found so far? This search has already found various materials with interesting properties by looking at nature (chapter 3). These materials can be used in the device as either the conductive structure, the substrate or as an encapsulating layer to change the lifetime of the devices. In the world of electromicrobiology, electroactive bacteria such as Geobacter and Shewanella, which produce conductive nanowires, form interesting candidates. Through the study of the proteins and genetic modification, the conductivity of these nanowires can be improved, though the conduction lengths are limited to the micrometre range. Meanwhile, cable bacteria already have conductivities comparable to the previously found biodegradable electronics, with conduction lengths in the range of centimetres. These results may improve even further as more research is done on these bacteria. However, hurdles such as the isolation of the conductive fibres need to be passed before these bacteria can be used in electronics. In order to study the signal transmission properties in cable bacteria, the response to periodic signals was analysed. On the one hand, sinewaves were used for impedance spectroscopy. A new model that considers the microscopic structure of the conductive pathways was proposed that gave a better match to the experimental data than the previous model. On the other hand, square waves were sent through the bacteria in order to simulate a digital signal. Even with the simplified model, the theoretical predictions could be fitted to the experimental data. Based on this data it was concluded that cable bacteria could transmit sinewave and square wave electrical signals in the investigated frequency range up to 500 kHz. This was demonstrated by sending an analog music signal through a cable bacteria filament. From the results obtained in this thesis, it is clear that cable bacteria can be considered as electrical interconnects allowing the transmission of electrical signals in a broad frequency range and therefore have the intrinsic potential to be used as biological electronic components in biohybrid electronics, biodegradable electronics, and other future e-biologics applications. The high conductivity values and good connections cable bacteria form with various electrodes makes it easy to integrate these bacteria in a circuit. However, once integrated, care should be taken to prevent exposure to ambient air or light as these degrade the conductivity of the bacteria. Since these bacteria are capable of transmitting information, maybe one day cable bacteria or other electroactive bacteria could be used to transmit the message that global e-waste is decreasing.-
dc.language.isoen-
dc.subject.otherCable Bacteria-
dc.subject.otherImpedance Spectroscopy-
dc.subject.otherOrganic Electronics-
dc.subject.otherBioelectronics-
dc.subject.otherBiological Semiconductors-
dc.subject.othere-biologics-
dc.subject.othere-waste-
dc.subject.otherMicrobial Nanowires-
dc.titleCable bacteria as electronic biological materials: Towards use in biodegradable electronics-
dc.typeTheses and Dissertations-
local.bibliographicCitation.jcatT1-
local.publisher.placeUHasselt-
dc.relation.references[1] FT, Mhaisen, al. et, “済無No Title No Title No Title,” 2018. [2] S. K. Kang, L. Yin, C. Bettinger, MRS Bull. 2020, 45, 87. [3] G. Ryder, H. Zhao Houlin, “The world’s e-waste is a huge problem. It’s also a golden opportunity,” 2019. [4] K. Grant, F. C. Goldizen, P. D. Sly, M. N. Brune, M. Neira, M. van den Berg, R. E. Norman, Lancet Glob. Heal. 2013, 1, e350. [5] H. D. Young, R. A. Freedman, University Physics with Modern Physics, Pearson, 2020. [6] J.-L. Basdevand, J. Dalibard, Quantum Mechanics, Springer, 2002. [7] N. Storey, Electronics a Systems Approach, Pearson, 1992. [8] D. (The C. C. Sadava, D. M. (University of T. Hillis, H. C. (Stanford U. Heller, M. R. (University of I. Berenbaum, Life: The Science of Biology, The Courier Companies, Inc, Sunderland, MA 01375 U.S.A., 2014. [9] N. A. Campbell, L. A. (Mills C. Urry, M. L. (New M. S. U. Cain, S. A. (University of C. Wasserman, P. V. (Mercy C. Minorsky, R. B. (Collin C. Orr, Biology: A Global Approach, Pearson Education Limited, Harlow, Essex, England, 2021. [10] A. G. (Haverford C. Loewy, P. (Rockefeller U. University), Siekevitz, J. R. (University of I. Menninger, J. A. N. (University of W. Gallant, Cell Structure & Function, Saunders College Publishing, 1991. [11] C. Boal, David (Simon Fraser University, Mechanics of the Cell, Cambridge University Press, New York, 2012. [12] D. T. Haynie, Biological Thermodynamics, The Press Syndicate Of The University Of Cambridge, Cambridge, United Kingdom, 2001. [13] M. Daune, Molecular Biophysics: Structures in Motion, Oxford University Press, Oxford, New York, U.S.A., 1999. [14] D. J. Griffiths, C. Inglefield, Introduction to Electrodynamics, Pearson, 2013. [15] D. J. Griffiths, Introduction to Quantum Mechanics, Prentice Hall, New Jersey, 1994. [16] L. Sanchez-Botero, D. S. Shah, R. Kramer-Bottiglio, Adv. Mater. 2022, 34, 1. [17] W. Shockley, Tech. Doc. Rep. No. AL TDR 64-207 1964, 152. [18] R. S. Waremra, P. Betaubun, E3S Web Conf. 2018, 73, 1. [19] A. Kokil, K. Yang, J. Kumar, J. Polym. Sci. Part B Polym. Phys. 2012, 50, 1130. [20] R. C. G. Creasey, A. B. Mostert, T. A. H. Nguyen, B. Virdis, S. Freguia, B. Laycock, Acta Biomater. 2018, 69, 1. [21] D. B. Newell, E. Tiesinga, Eds. , The International System of Units (SI), National Institute Of Science And Technology, 2019. [22] S. Weinberg, The Quantum Theory of Fields, The Press Syndicate Of The University Of Cambridge, 1995. [23] P. E. D. H. Green, in Mater. Eng. 25, 2000, pp. 8-1-8–4. [24] M. Graef, Proc. - 2021 IEEE Int. Roadmap Devices Syst. Outbriefs, IRDS 2021 2021, DOI 10.1109/IRDS54852.2021.00013. [25] N. L. Ing, M. Y. El-Naggar, A. I. Hochbaum, J. Phys. Chem. B 2018, 122, 10403. [26] J. Golbeck, The Biophysics of Photosynthesis | John Golbeck | Springer, n.d. [27] J. J. Hopfield, 1974, 71, 3640. [28] J. W. Lichtman, J. A. Conchello, Nat. Methods 2005, 2, 910. [29] E. V. Volpi, J. M. Bridger, Biotechniques 2008, 45, 385. [30] J. M. Levsky, R. H. Singer, J. Cell Sci. 2003, 116, 2833. [31] R. F. Egerton, Ultramicroscopy 2014, 145, 85. [32] B. De Samber, G. Silversmit, R. Evens, K. De Schamphelaere, C. Janssen, B. Masschaele, L. Van Hoorebeke, L. Balcaen, F. Vanhaecke, G. Falkenberg, L. Vincze, Anal. Bioanal. Chem. 2008, 390, 267. [33] R. F. (University of A. Egerton, Physical Principles of Electron Microscopy, Springer, 2005. [34] J. L. S. Milne, M. J. Borgnia, A. Bartesaghi, E. E. H. Tran, L. A. Earl, D. M. Schauder, J. Lengyel, J. Pierson, A. Patwardhan, S. Subramaniam, FEBS J. 2013, 280, 28. [35] N. A. Lyons, R. Kolter, Curr. Opin. Microbiol. 2015, 24, 21. [36] M. T. Cabeen, C. Jacobs-Wagner, Nat. Rev. Microbiol. 2005, 3, 601. [37] D. G. F. EDWARD, E. A. FREUNDT, Int. J. Syst. Bacteriol. 1967, 17, 267. [38] M. W. Westneat, O. Betz, R. W. Blob, K. Fezzaa, W. J. Cooper, W. K. Lee, Science (80-. ). 2003, 299, 558. [39] R. Monahan-earley, A. M. Dvorak, W. C. Aird, B. Israel, D. Medical, B. Israel, D. Medical, B. Israel, D. Medical, D. Island, S. Cover, Evolutionary Origins of the Blood Vascular System and Endothelium, 2013. [40] L. Shi, H. Dong, G. Reguera, H. Beyenal, A. Lu, J. Liu, H. Q. Yu, J. K. Fredrickson, Nat. Rev. Microbiol. 2016, 14, 651. [41] E. Bueno, S. Mesa, E. J. Bedmar, D. J. Richardson, M. J. Delgado, Antioxidants Redox Signal. 2012, 16, 819. [42] T. E. Meyer, M. D. Kamen, Adv. Protein Chem. 1982, 35, 105. [43] V. R. I. Kaila, M. Wikström, Nat. Rev. Microbiol. 2021, 19, 319. [44] D. R. Lide, Handbook of Chemistry an Physics, n.d. [45] J. Postgate, Annu. Rev. Microbiol. 1958, 13(1), 505. [46] D. R. Lovley, Nat. Rev. Microbiol. 2006, 4, 497. [47] K. Rabaey, J. Rodríguez, L. L. Blackall, J. Keller, P. Gross, D. Batstone, W. Verstraete, K. H. Nealson, ISME J. 2007, 1, 9. [48] C. Koch, F. Harnisch, ChemElectroChem 2016, 3, 1282. [49] G. Reguera, FEMS Microbiol. Ecol. 2018, 94, 1. [50] G. Pankratova, L. Hederstedt, L. Gorton, Anal. Chim. Acta 2019, 1076, 32. [51] L. Derek R, C. Jhon D, B.-H. Elizabeth L, P. Elizabeth J, W. Joan c, Nature 1996, 382, 445. [52] D. R. Lovley, J. F. Stolz, G. L. J. Nord, E. J. P. Phillips, Nature 1987, 330, 252. [53] D. R. Lovley, E. J. P. Phillips, Appl. Environ. Microbiol. 1988, 54, 1472. [54] C. R. Myers, K. H. Nealson, Science (80-. ). 1988, 240, 1319. [55] D. R. Lovley, E. J. P. Phillips, D. J. Lonergan, Appl. Environ. Microbiol. 1989, 55, 700. [56] S. Kato, K. Hashimoto, K. Watanabe, Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 10042. [57] J. M. Byrne, N. Klueglein, C. Pearce, K. M. Rosso, E. Appel, A. Kappler, Science (80-.). 2015, 347, 1473. [58] D. E. Ross, J. M. Flynn, D. B. Baron, J. A. Gralnick, D. R. Bond, PLoS One 2011, 6, DOI 10.1371/journal.pone.0016649. [59] M. Y. El-Naggar, G. Wanger, K. M. Leung, T. D. Yuzvinsky, G. Southam, J. Yang, W. M. Lau, K. H. Nealson, Y. A. Gorby, Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 18127. [60] K. M. Leung, G. Wanger, M. Y. El-Naggar, Y. Gorby, G. Southam, W. M. Lau, J. Yang, Nano Lett. 2013, 13, 2407. [61] D. R. Lovley, D. J. F. Walker, Front. Microbiol. 2019, 10, DOI 10.3389/fmicb.2019.02078. [62] F. Wang, Y. Gu, J. P. O’Brien, S. M. Yi, S. E. Yalcin, V. Srikanth, C. Shen, D. Vu, N. L. Ing, A. I. Hochbaum, E. H. Egelman, N. S. Malvankar, Cell 2019, 177, 361. [63] N. S. Malvankar, M. Vargas, K. P. Nevin, A. E. Franks, C. Leang, S. F. Covalla, J. P. Johnson, B. Kim, K. Inoue, V. M. Rotello, M. T. Tuominen, D. R. Lovley, 2011, 6, DOI 10.1038/nnano.2011.119. [64] R. Y. Adhikari, N. S. Malvankar, M. T. Tuominen, D. R. Lovley, RSC Adv. 2016, 6, 8354. [65] S. Lampa-Pastirk, J. P. Veazey, K. A. Walsh, G. T. Feliciano, R. J. Steidl, S. H. Tessmer, G. Reguera, Sci. Rep. 2016, 6, 1. [66] G. Reguera, K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, D. R. Lovley, Nature 2005, 435, 1098. [67] Y. Gu, V. Srikanth, A. I. Salazar-Morales, R. Jain, J. P. O’Brien, S. M. Yi, R. K. Soni, F. A. Samatey, S. E. Yalcin, N. S. Malvankar, Nature 2021, 597, 430. [68] Y. Tan, R. Y. Adhikari, N. S. Malvankar, J. E. War, T. L. Woodard, K. P. Nevin, D. R. Lovley, MBio 2017, 8, 1. [69] F. J. R. Meysman, Trends Microbiol. 2018, 26, 411. [70] D. J. Filman, S. F. Marino, J. E. Ward, L. Yang, Z. Mester, E. Bullitt, D. R. Lovley, M. Strauss, Commun. Biol. 2019, 2, 19. [71] M. Mußmann, H. N. Schulz, B. Strotmann, T. Kjær, L. P. Nielsen, R. A. Rosselló-Mora, R. I. Amann, B. B. Jørgensen, Environ. Microbiol. 2003, 5, 523. [72] M. Sayama, N. Risgaard-Petersen, L. P. Nielsen, H. Fossing, P. B. Christensen, Microbiology 2005, 71, 7575. [73] C. Pfeffer, S. Larsen, J. Song, M. Dong, F. Besenbacher, R. L. Meyer, K. U. Kjeldsen, L. Schreiber, Y. A. Gorby, M. Y. El-Naggar, K. M. Leung, A. Schramm, N. Risgaard- Petersen, L. P. Nielsen, Nature 2012, 491, 218. [74] F. J. R. Meysman, N. Risgaard-Petersen, S. Y. Malkin, L. P. Nielsen, Geochim. Cosmochim. Acta 2015, 152, 122. [75] A. Preisler, D. De Beer, A. Lichtschlag, G. Lavik, A. Boetius, B. B. Joørgensen, ISME J. 2007, 1, 341. [76] L. P. Nielsen, N. Risgaard-Petersen, H. Fossing, P. B. Christensen, M. Sayama, Nature 2010, 463, 1071. [77] Center for Geomicrobiology, Aarhus, Denmark, 2012. [78] Y. Tokunou, M. Toyofuku, N. Nomura, M. Toyofuku, N. Nomura, MBio 2022, 13. [79] S. Y. Malkin, A. M. F. Rao, D. Seitaj, D. Vasquez-Cardenas, E. M. Zetsche, S. Hidalgo-Martinez, H. T. S. Boschker, F. J. R. Meysman, ISME J. 2014, 8, 1843. [80] S. Larsen, L. P. Nielsen, A. Schramm, Environ. Microbiol. Rep. 2015, 7, 175. [81] L. D. W. Burdorf, S. Hidalgo-Martinez, P. L. M. Cook, F. J. R. Meysman, Mar. Ecol. Prog. Ser. 2016, 545, DOI 10.3354/meps11635. [82] L. D. W. Burdorf, A. Tramper, D. Seitaj, L. Meire, S. Hidalgo-Martinez, E. M. Zetsche, H. T. S. Boschker, F. J. R. Meysman, Biogeosciences 2017, 14, 683. [83] D. Trojan, L. Schreiber, J. T. Bjerg, A. Bøggild, T. Yang, K. U. Kjeldsen, A. Schramm, Syst. Appl. Microbiol. 2016, 39, 297. [84] N. Risgaard-Petersen, M. Kristiansen, R. B. Frederiksen, A. L. Dittmer, J. T. Bjerg, D. Trojan, L. Schreiber, L. R. Damgaard, A. Schramm, L. P. Nielsen, Appl. Environ. Microbiol. 2015, 81, 6003. [85] G. El-Hage, K. Wouters, J. V. Manca, Intrinsic Electrical Transmission Properties of Cable Bacteria: Electrical Wires from Nature for next-Generation Biobased/Biodegradable Electronic, UHasselt, 2023. [86] P.-Y. (Pennsylvania S. U. Hsing, “Gas-powered Circle of Life – Succession in a Deepsea Ecosystem,” can be found under https://oceanexplorer.noaa.gov/explorations/10lophelia/logs/oct18/oct18.html, 2010. [87] M. E. Torres, G. Bohrmann, 2016, 117. [88] W. Brazelton, Curr. Biol. 2017, 27, R450. [89] C. Thorup, C. Petro, A. Bøggild, T. S. Ebsen, S. Brokjær, L. P. Nielsen, A. Schramm, J. J. Bjerg, Syst. Appl. Microbiol. 2021, 44, 126236. [90] D. W. Waite, M. Chuvochina, C. Pelikan, D. H. Parks, P. Yilmaz, M. Wagner, A. Loy, T. Naganuma, R. Nakai, W. B. Whitman, M. W. Hahn, J. Kuever, P. Hugenholtz, Int. J. Syst. Evol. Microbiol. 2020, 70, 5972. [91] C. L. Schoch, “NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford),” can be found under https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi, 2020. [92] T. L. Hawkins, J. C. Detter, P. M. Richardson, Curr. Opin. Biotechnol. 2002, 13, 65. [93] B. Merriman, I. Torrent, J. M. Rothberg, Electrophoresis 2012, 33, 3397. [94] M. Sereika, F. Petriglieri, T. B. N. Jensen, A. Sannikov, M. Hoppe, P. H. Nielsen, I. P. G. Marshall, A. Schramm, M. Albertsen, ISME J. 2023, 17, 561. [95] F. J. R. Meysman, Trends Microbiol. 2018, 26, 411. [96] R. Cornelissen, A. Bøggild, R. Thiruvallur Eachambadi, R. I. Koning, A. Kremer, S. Hidalgo-Martinez, E.-M. Zetsche, L. R. Damgaard, R. Bonné, J. Drijkoningen, J. S. Geelhoed, T. Boesen, H. T. S. Boschker, R. Valcke, L. P. Nielsen, J. D’Haen, J. V. Manca, F. J. R. Meysman, Front. Microbiol. 2018, 9, 3044. [97] L. Digel, M. L. Justesen, R. Bonné, N. Fransaert, K. Wouters, P. B. Jensen, L. E. Plum-Jensen, I. P. G. Marshall, L. Nicolas-Asselineau, T. Drace, A. Bøggild, J. L. Hansen, A. Schramm, E. D. Bøjesen, L. P. Nielsen, J. V. Manca, T. Boesen, bioRxiv 2023, 2023.05.24.541955. [98] H. T. S. Boschker, P. L. M. Cook, L. Polerecky, R. T. Eachambadi, H. Lozano, S. Hidalgo-Martinez, D. Khalenkow, V. Spampinato, N. Claes, P. Kundu, D. Wang, S. Bals, K. K. Sand, F. Cavezza, T. Hauffman, J. T. Bjerg, A. G. Skirtach, K. Kochan, M. McKee, B. Wood, D. Bedolla, A. Gianoncelli, N. M. J. Geerlings, N. Van Gerven, H. Remaut, J. S. Geelhoed, R. Millan-Solsona, L. Fumagalli, L. P. Nielsen, A. Franquet, J. V. Manca, G. Gomila, F. J. R. Meysman, Nat. Commun. 2021, 12, 1. [99] R. Thiruvallur Eachambadi, H. T. S. Boschker, A. Franquet, V. Spampinato, S. Hidalgo- Martinez, R. Valcke, F. J. R. Meysman, J. V. Manca, Anal. Chem. 2021, 93, 7226. [100] J. T. Bjerg, L. R. Damgaard, S. A. Holm, A. Schramm, L. P. Nielsen, Appl. Environ. Microbiol. 2016, 82, 3816. [101] S. Scilipoti, K. Koren, N. Risgaard-Petersen, A. Schramm, L. P. Nielsen, Sci. Adv. 2021, 7, 1. [102] K. U. Kjeldsen, L. Schreiber, C. A. Thorup, T. Boesen, J. T. Bjerg, T. Yang, M. S. Dueholm, S. Larsen, N. Risgaard-Petersen, M. Nierychlo, M. Schmid, A. Bøggild, J. van de Vossenberg, J. S. Geelhoed, F. J. R. Meysman, M. Wagner, P. H. Nielsen, L. P. Nielsen, A. Schramm, Proc. Natl. Acad. Sci. 2019, 201903514. [103] J. T. Bjerg, H. T. S. Boschker, S. Larsen, D. Berry, M. Schmid, D. Millo, P. Tataru, F. J. R. Meysman, M. Wagner, L. P. Nielsen, A. Schramm, Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 5786. [104] N. Risgaard-Petersen, L. R. Damgaard, A. Revil, L. P. Nielsen, J. Geophys. Res. Biogeosciences 2014, 119, 1475. [105] U. Marzocchi, D. Trojan, S. Larsen, R. L. Meyer, N. P. Revsbech, A. Schramm, L. P. Nielsen, N. Risgaard-Petersen, ISME J. 2014, 8, 1682. [106] N. Risgaard-Petersen, A. Revil, P. Meister, L. P. Nielsen, Geochim. Cosmochim. Acta 2012, 92, 1. [107] R. Schauer, N. Risgaard-Petersen, K. U. Kjeldsen, J. J. Tataru Bjerg, B. B Jørgensen, A. Schramm, L. P. Nielsen, J. J. T. Bjerg, B. B. Jorgensen, A. Schramm, L. P. Nielsen, J. J. Tataru Bjerg, B. B Jørgensen, A. Schramm, L. P. Nielsen, ISME J. 2014, 8, 1314. [108] F. J. R. Meysman, R. Cornelissen, S. Trashin, R. Bonné, S. H. Martinez, J. van der Veen, C. J. Blom, C. Karman, J.-L. Hou, R. T. Eachambadi, J. S. Geelhoed, K. De Wael, H. J. E. Beaumont, B. Cleuren, R. Valcke, H. S. J. van der Zant, H. T. S. Boschker, J. V. Manca, Nat. Commun. 2019, 10, 1. [109] N. F. Polizzi, S. S. Skourtis, D. N. Beratan, Faraday Discuss. 2012, 155, 43. [110] T. Yang, M. S. Chavez, C. M. Niman, S. Xu, M. Y. El-, 2023, 3502. [111] R. Bonné, J. L. Hou, J. Hustings, K. Wouters, M. Meert, S. Hidalgo-Martinez, R. Cornelissen, F. Morini, S. Thijs, J. Vangronsveld, R. Valcke, B. Cleuren, F. J. R. Meysman, J. V. Manca, Sci. Rep. 2020, 10, 1. [112] N. Amdursky, E. D. Głowacki, P. Meredith, Adv. Mater. 2018, 1802221. [113] R. Thiruvallur Eachambadi, R. Bonné, R. Cornelissen, S. Hidalgo-Martinez, J. Vangronsveld, F. J. R. Meysman, R. Valcke, B. Cleuren, J. V. Manca, Adv. Biosyst. 2020, 4, 1. [114] A. M. F. Rao, S. Y. Malkin, S. Hidalgo-Martinez, F. J. R. Meysman, Geochim. Cosmochim. Acta 2016, 172, 265. [115] S. van de Velde, L. Lesven, L. D. W. Burdorf, S. Hidalgo-Martinez, J. S. Geelhoed, P. Van Rijswijk, Y. Gao, F. J. R. Meysman, Geochim. Cosmochim. Acta 2016, 194, DOI 10.1016/j.gca.2016.08.038. [116] B. Matturro, C. C. Viggi, F. Aulenta, S. Rossetti, Front. Microbiol. 2017, 8, 1. [117] H. Müller, J. Bosch, C. Griebler, L. R. Damgaard, L. P. Nielsen, T. Lueders, R. U. Meckenstock, ISME J. 2016, 10, 2010. [118] T. Sandfeld, U. Marzocchi, C. Petro, A. Schramm, N. Risgaard-Petersen, ISME J. 2020, 14, DOI 10.1038/s41396-020-0607-5. [119] V. V. Scholz, R. U. Meckenstock, L. P. Nielsen, N. Risgaard-Petersen, Nat. Commun. 2020, 11, DOI 10.1038/s41467-020-15812-w. [120] D. Vasquez-Cardenas, J. Van De Vossenberg, L. Polerecky, S. Y. Malkin, R. Schauer, S. Hidalgo-Martinez, V. Confurius, J. J. Middelburg, F. J. R. Meysman, H. T. S. Boschker, ISME J. 2015, 9, 1966. [121] J. J. Bjerg, J. J. M. Lustermans, I. P. G. Marshall, A. J. Mueller, S. Brokjær, C. A. Thorup, P. Tataru, M. Schmid, M. Wagner, L. P. Nielsen, A. Schramm, Nat. Commun. 2023, 14, 1. [122] Scribner, “ZView For Windows,” can be found under https://www.scribner.com/software/68-general-electrochemistr376-zview-forwindows/, n.d. [123] W. G. Morris, Encycl. Mater. Sci. Technol. 2001, 3, 365. [124] G. J. Simpson, D. L. Sedin, K. L. Rowlen, Langmuir 1999, 15, 1429. [125] T. W. Kelley, E. L. Granstrom, C. Daniel Frisbie, Adv. Mater. 1999, 11, 261. [126] J. V. Lauritsen, M. Reichling, J. Phys. Condens. Matter 2010, 22, DOI 10.1088/0953- 8984/22/26/263001. [127] K. Xu, W. Sun, Y. Shao, F. Wei, X. Zhang, W. Wang, P. Li, Nanotechnol. Rev. 2018, 7, 605. [128] R. Hiesgen, K. A. Friedrich, PEM Fuel Cell Diagnostic Tools 2011, 395. [129] P. C. Paul, Thermal Scanning Probe Lithography, Elsevier, 2016. [130] L. Van Vaeck, A. Adriaens, R. Gijbels, Mass Spectrom. Rev. 1999, 18, 1. [131] “Evans Trift system and cameca’s iontof instruments,” can be found under https://serc.carleton.edu/details/images/8384.html, 2007. [132] R. Thiruvallur Eachambadi, Conductive Structures in Cable Bacteria: A Study of the Electrical and Compositional Properties of the Perisplasmic Conductive Structures in Cable Bacteria, UHasselt, 2020. [133] R. Bonné, K. Wouters, J. J. M. Lustermans, J. V Manca, A. R. Rowe, Science (80-. ). 2022, 330, 1413. [134] S. K. Kang, S. W. Hwang, H. Cheng, S. Yu, B. H. Kim, J. H. Kim, Y. Huang, J. A. Rogers, Adv. Funct. Mater. 2014, 24, 4427. [135] S.-W. Hwang, H. Tao, D.-H. Kim, H. Cheng, J.-K. Song, E. Rill, M. A. Brenckle, B. Panilaitis, S. M. Won, Y.-S. Kim, Y. M. Song, K. J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D. L. Kaplan, M. R. Zakin, M. J. Slepian, Y. Huang, F. G. Omenetto, J. A. Rogers, Science (80-. ). 2012, 337, 1640. [136] H. Seidel, L. Csepregi, A. Heuberger, H. Baumgärtel, J. Electrochem. Soc. 1990, 137, 3626. [137] Y. K. Lee, K. J. Yu, E. Song, A. Barati Farimani, F. Vitale, Z. Xie, Y. Yoon, Y. Kim, A. Richardson, H. Luan, Y. Wu, X. Xie, T. H. Lucas, K. Crawford, Y. Mei, X. Feng, Y. Huang, B. Litt, N. R. Aluru, L. Yin, J. A. Rogers, ACS Nano 2017, 11, 12562. [138] P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer- Brezina, D. Bäuerle, N. S. Sariciftci, Org. Electron. 2007, 8, 648. [139] T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, Science (80-. ). 2009, 326, 1516. [140] D. N. Beratan, Annu. Rev. Phys. Chem. 2019, 70, 71. [141] H. Zollinger, Color Chemistry Syntheses, Properties, and Applications of Organic Dyes and Pigments: Von H. Zollinger; Weinheim, Basel, Cambridge, New York, VCH Verlagsgesellschaft, 1987; XII, 367 Seiten Mit 40 Bildern Und 16 Tabellen; Format 17 Cm × 24 Cm, Pappband DM, John Wiley & Sons, 2003. [142] E. D. Glowacki, L. Leonat, G. Voss, M. Bodea, Z. Bozkurt, M. Irimia-Vladu, S. Bauer, N. S. Sariciftci, Org. Semicond. Sensors Bioelectron. IV 2011, 8118, 81180M1. [143] M. Irimia-Vladu, E. D. Głowacki, G. Voss, S. Bauer, N. S. Sariciftci, Mater. Today 2012, 15, 340. [144] R. Campos, A. Kandelbauer, K. H. Robra, A. Cavaco-Paulo, G. M. Gübitz, in J. Biotechnol., 2001. [145] I. Valdez-Vazquez, J. G. Robledo-Rizo, K. M. Muñoz-Páez, M. Pérez-Rangel, G. M. de la Luz Ruiz-Aguilar, Brazilian J. Microbiol. 2020, 51, 701. [146] A. G. S. Prado, L. B. Bolzon, C. P. Pedroso, A. O. Moura, L. L. Costa, Appl. Catal. B Environ. 2008, 82, DOI 10.1016/j.apcatb.2008.01.024. [147] M. Vautier, C. Guillard, J. M. Herrmann, J. Catal. 2001, 201, DOI 10.1006/jcat.2001.3232. [148] L. Chen, G. Bai, R. Yang, J. Zang, T. Zhou, G. Zhao, Food Chem. 2014, 149, 307. [149] R. Suryana, Khoiruddin, A. Supriyanto, Mater. Sci. Forum 2013, 737, 15. [150] V. R. Feig, H. Tran, Z. Bao, ACS Cent. Sci. 2018, 4, 337. [151] W. F. Harrington, P. H. Von Hippel, Adv. Protein Chem. 1962, 16, 1. [152] M. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, P. I. Lelkes, Biomaterials 2006, 27, 2705. [153] M. Irimia-vladu, P. A. Troshin, M. Reisinger, G. Schwabegger, M. Ullah, R. Schwoediauer, A. Mumyatov, M. Bodea, J. W. Fergus, V. F. Razumov, H. Sitter, S. Bauer, Org. Electron. 2010, 11, 1974. [154] C. J. Bettinger, Z. Bao, Adv. Mater. 2010, 22, 651. [155] S. Chanfreau, M. Mena, J. R. Porras-Domínguez, M. Ramírez-Gilly, M. Gimeno, P. Roquero, A. Tecante, E. Bárzana, Bioprocess Biosyst. Eng. 2010, 33, 629. [156] Y. Wang, D. D. Rudym, A. Walsh, L. Abrahamsen, H. J. Kim, H. S. Kim, C. Kirker-Head, D. L. Kaplan, Biomaterials 2008, 29, 3415. [157] X. Hu, K. Shmelev, L. Sun, E. S. Gil, S. H. Park, P. Cebe, D. L. Kaplan, Biomacromolecules 2011, 12, 1686. [158] D. H. Kim, Y. S. Kim, J. Wu, Z. Liu, J. Song, H. S. Kim, Y. Y. Huang, K. C. Hwang, J. A. Rogers, Adv. Mater. 2009, 21, 3703. [159] D. P. Martin, S. F. Williams, Biochem. Eng. J. 2003, 16, 97. [160] K. O. Siegenthaler, A. Künkel, G. Skupin, M. Yamamoto, Adv. Polym. Sci. 2012, 245, 91. [161] Z. M. Summers, H. E. Fogarty, C. Leang, A. E. Franks, N. S. Malvankar, D. R. Lovley, 2010, 1413. [162] S. Sure, M. L. Ackland, A. A. J. Torriero, A. Adholeya, M. Kochar, Microbiol. (United Kingdom) 2016, 162, 2017. [163] D. F. Liu, W. W. Li, Curr. Opin. Chem. Biol. 2020, 59, 140. [164] S. E. Yalcin, J. P. O’Brien, Y. Gu, K. Reiss, S. M. Yi, R. Jain, V. Srikanth, P. J. Dahl, W. Huynh, D. Vu, A. Acharya, S. Chaudhuri, T. Varga, V. S. Batista, N. S. Malvankar, Nat. Chem. Biol. 2020, DOI 10.1038/s41589-020-0623-9. [165] Y. A. Gorby, S. Yanina, J. S. McLean, K. M. Rosso, D. Moyles, A. Dohnalkova, T. J. Beveridge, I. S. Chang, B. H. Kim, K. S. Kim, D. E. Culley, S. B. Reed, M. F. Romine, D. A. Saffarini, E. A. Hill, L. Shi, D. A. Elias, D. W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K. H. Nealson, J. K. Fredrickson, Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11358. [166] S. Pirbadian, S. E. Barchinger, K. Man, H. Suk, Y. Jangir, R. A. Bouhenni, PNAS 2014, 111, 12883. [167] B. E. Logan, R. Rossi, A. Ragab, P. E. Saikaly, Nat. Rev. Microbiol. 2019, 17, 307. [168] D. J. Walker, R. Y. Adhikari, D. E. Holmes, J. E. Ward, T. L. Woodard, K. P. Nevin, D. R. Lovley, ISME J. 2018, 12, 48. [169] D. J. F. Walker, E. Martz, D. E. Holmes, Z. Zhou, S. S. Nonnenmann, D. R. Lovley, MBio 2019, 10, 1. [170] Y. Tan, R. Y. Adhikari, N. S. Malvankar, S. Pi, J. E. Ward, T. L. Woodard, K. P. Nevin, Q. Xia, M. T. Tuominen, D. R. Lovley, Small 2016, 12, 4481. [171] T. Ueki, D. J. F. Walker, T. L. Woodard, K. P. Nevin, S. S. Nonnenmann, D. R. Lovley, ACS Synth. Biol. 2020, 9, DOI 10.1021/acssynbio.9b00506. [172] K. M. Cosert, A. Castro-Forero, R. J. Steidl, R. M. Worden, G. Reguera, MBio 2019, 10, DOI 10.1128/mBio.02721-19. [173] T. Ueki, D. J. F. Walker, P. L. Tremblay, K. P. Nevin, J. E. Ward, T. L. Woodard, S. S. Nonnenmann, D. R. Lovley, ACS Synth. Biol. 2019, 8, 1809. [174] A. F. Smith, X. Liu, T. L. Woodard, T. Fu, T. Emrick, J. M. Jiménez, D. R. Lovley, J. Yao, Nano Res. 2020, 13, 1479. [175] X. Liu, H. Gao, J. E. Ward, X. Liu, B. Yin, T. Fu, J. Chen, D. R. Lovley, J. Yao, Nature 2020, 578, 550. [176] D. R. Lovley, J. Yao, Trends Biotechnol. 2021, 39, 940. [177] D. R. Lovley, Annu. Rev. Microbiol. 2012, 66, 391-
local.type.refereedRefereed-
local.type.specifiedPhd thesis-
local.provider.typePdf-
local.uhasselt.internationalno-
item.fullcitationWOUTERS, Koen (2024) Cable bacteria as electronic biological materials: Towards use in biodegradable electronics.-
item.fulltextWith Fulltext-
item.contributorWOUTERS, Koen-
item.accessRightsEmbargoed Access-
item.embargoEndDate2029-06-15-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
PhD Thesis Koen Wouters with cover.pdf
  Until 2029-06-15
Published version4.63 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.