Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/43138
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRINEAU, Francois-
dc.contributor.authorGroh, J-
dc.contributor.authorCLAES, Julie-
dc.contributor.authorGROSJEAN, Kristof-
dc.contributor.authorMench, M-
dc.contributor.authorMORENO DRUET, Maria-
dc.contributor.authorPovilaitis, V-
dc.contributor.authorPütz, T-
dc.contributor.authorRutkowska, B-
dc.contributor.authorSchröder, P-
dc.contributor.authorSOUDZILOVSKAIA, Nadia-
dc.contributor.authorSWINNEN, Xander-
dc.contributor.authorSzulc, W-
dc.contributor.authorTHIJS, Sofie-
dc.contributor.authorVandenborght, J-
dc.contributor.authorVANGRONSVELD, Jaco-
dc.contributor.authorVereecken, H-
dc.contributor.authorVerhaege, Kasper-
dc.contributor.authorZydelis, R-
dc.contributor.authorLoit, E-
dc.date.accessioned2024-06-13T11:00:32Z-
dc.date.available2024-06-13T11:00:32Z-
dc.date.issued2024-
dc.date.submitted2024-06-13T10:52:44Z-
dc.identifier.citationHeliyon, 10 (1) (Art N° e23882)-
dc.identifier.urihttp://hdl.handle.net/1942/43138-
dc.description.abstractGrowing crops on marginal lands is a promising solution to alleviate the increasing pressure on agricultural land in Europe. Such crops will however be at the same time exposed to increased drought and pathogen prevalence, on already challenging soil conditions. Some sustainable practices, such as Silicon (Si) foliar fertilization, have been proposed to alleviate these two stress factors, but have not been tested under controlled, future climate conditions. We hypothesized that Si foliar fertilization would be beneficial for crops under future climate, and would have cascading beneficial effects on ecosystem processes, as many of them are directly dependent on plant health. We tested this hypothesis by exposing spring barley growing on marginal soil macrocosms (three with, three without Si treatment) to 2070 climate projections in an ecotron facility. Using the high-capacity monitoring of the ecotron, we estimated C, water, and N budgets of every macrocosm. Additionally, we measured crop yield, the biomass of each plant organ, and characterized bacterial communities using metabarcoding. Despite being exposed to water stress conditions, plants did not produce more biomass with the foliar Si fertilization, whatever the organ considered. Evapotranspiration (ET) was unaffected, as well as water quality and bacterial communities. However, in the 10-day period following two of the three Si applications, we measured a significant increase in C sequestration, when climate conditions where significantly drier, while ET remained the same. We interpreted these results as a less significant effect of Si treatment than expected as compared with literature, which could be explained by the high CO2 levels under future climate, that reduces need for stomata opening, and therefore sensitivity to drought. We conclude that making marginal soils climate proof using foliar Si treatments may not be a sufficient strategy, at least in this type of nutrient-poor, dry, sandy soil.-
dc.description.sponsorshipThe study was supported by the FACCE-SURPLUS project BiofoodonMars. Jannis Groh was supported the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation-project no. 460817082). Michel Mench is member of the COST Action PlantMetals (https://plantmetals.eu/plantmetals-home.html) and the Ecotox INRAE network (https://www6.inrae.fr/ecotox_eng/ The-network). We thank AVEVE Belgium for providing us with barley seeds.-
dc.language.isoen-
dc.publisherELSEVIER SCI LTD-
dc.rights2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).-
dc.subject.otherMarginal soil-
dc.subject.otherClimate change-
dc.subject.otherEcosystem services-
dc.subject.otherSustainable agricultural practices-
dc.titleLimited effects of crop foliar Si fertilization on a marginal soil under a future climate scenario-
dc.typeJournal Contribution-
dc.identifier.issue1-
dc.identifier.volume10-
local.bibliographicCitation.jcatA1-
local.publisher.placeTHE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD OX5 1GB, OXON, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnre23882-
dc.identifier.doi10.1016/j.heliyon.2023.e23882-
dc.identifier.pmid38192753-
dc.identifier.isi001146029200001-
local.provider.typeWeb of Science-
local.uhasselt.internationalyes-
item.fullcitationRINEAU, Francois; Groh, J; CLAES, Julie; GROSJEAN, Kristof; Mench, M; MORENO DRUET, Maria; Povilaitis, V; Pütz, T; Rutkowska, B; Schröder, P; SOUDZILOVSKAIA, Nadia; SWINNEN, Xander; Szulc, W; THIJS, Sofie; Vandenborght, J; VANGRONSVELD, Jaco; Vereecken, H; Verhaege, Kasper; Zydelis, R & Loit, E (2024) Limited effects of crop foliar Si fertilization on a marginal soil under a future climate scenario. In: Heliyon, 10 (1) (Art N° e23882).-
item.fulltextWith Fulltext-
item.contributorRINEAU, Francois-
item.contributorGroh, J-
item.contributorCLAES, Julie-
item.contributorGROSJEAN, Kristof-
item.contributorMench, M-
item.contributorMORENO DRUET, Maria-
item.contributorPovilaitis, V-
item.contributorPütz, T-
item.contributorRutkowska, B-
item.contributorSchröder, P-
item.contributorSOUDZILOVSKAIA, Nadia-
item.contributorSWINNEN, Xander-
item.contributorSzulc, W-
item.contributorTHIJS, Sofie-
item.contributorVandenborght, J-
item.contributorVANGRONSVELD, Jaco-
item.contributorVereecken, H-
item.contributorVerhaege, Kasper-
item.contributorZydelis, R-
item.contributorLoit, E-
item.accessRightsOpen Access-
crisitem.journal.eissn2405-8440-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Limited effects of crop foliar Si fertilization on a marginal soil under a future climate scenario.pdfPublished version1.81 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.