Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/4325
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | KADANKOVA, Tetyana | - |
dc.contributor.author | Kadankov, V.F. | - |
dc.date.accessioned | 2007-12-20T15:48:21Z | - |
dc.date.available | 2007-12-20T15:48:21Z | - |
dc.date.issued | 2005 | - |
dc.identifier.citation | Ukrainian mathematical journal, 57(10). p. 1359-1384 | - |
dc.identifier.uri | http://hdl.handle.net/1942/4325 | - |
dc.description.abstract | For a homogeneous process with independent increments, we determine the integral transforms of the joint distribution of the first-exit time from an interval and the value of a jump of a process over the boundary at exit time and the joint distribution of the supremum, infimum, and value of the process. | - |
dc.language.iso | en | - |
dc.publisher | SPRINGER | - |
dc.title | On the distribution of the time of the first exit from an interval and the value of a jump over the boundary for processes with independent increments and random walks | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 1384 | - |
dc.identifier.issue | 10 | - |
dc.identifier.spage | 1359 | - |
dc.identifier.volume | 57 | - |
local.bibliographicCitation.jcat | A2 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A2 | - |
dc.identifier.doi | 10.1007/s11253-006-0016-6 | - |
item.fulltext | No Fulltext | - |
item.contributor | KADANKOVA, Tetyana | - |
item.contributor | Kadankov, V.F. | - |
item.fullcitation | KADANKOVA, Tetyana & Kadankov, V.F. (2005) On the distribution of the time of the first exit from an interval and the value of a jump over the boundary for processes with independent increments and random walks. In: Ukrainian mathematical journal, 57(10). p. 1359-1384. | - |
item.accessRights | Closed Access | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.