Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/43295
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRanocha, Hendrik-
dc.contributor.authorSCHUETZ, Jochen-
dc.date.accessioned2024-06-26T14:41:32Z-
dc.date.available2024-06-26T14:41:32Z-
dc.date.issued2024-
dc.date.submitted2024-06-26T10:23:36Z-
dc.identifier.citationCommunications in Applied Mathematics and Computational Science, 19 (1) , p. 27 -56-
dc.identifier.issn1559-3940-
dc.identifier.urihttp://hdl.handle.net/1942/43295-
dc.description.abstractWe combine the recent relaxation approach with multiderivative Runge-Kutta methods to preserve conservation or dissipation of entropy functionals for ordinary and partial differential equations. Relaxation methods are minor modifications of explicit and implicit schemes, requiring only the solution of a single scalar equation per time step in addition to the baseline scheme. We demonstrate the robustness of the resulting methods for a range of test problems including the 3D compressible Euler equations. In particular, we point out improved error growth rates for certain entropy-conservative problems including nonlinear dispersive wave equations.-
dc.description.sponsorshipHR was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, project number 513301895) and the Daimler und Benz Stiftung (Daimler and Benz foundation, project number 32-10/22).-
dc.language.isoen-
dc.publisherMATHEMATICAL SCIENCE PUBL-
dc.rights2024 MSP (Mathematical Sciences Publishers).-
dc.subject.othertwo-derivative methods-
dc.subject.othermultiderivative methods-
dc.subject.otherinvariants-
dc.subject.otherconservative systems-
dc.subject.otherdissipative systems-
dc.subject.otherstructure-preserving methods AMS subject classification 65L06-
dc.subject.other65M20-
dc.subject.other65M70-
dc.titleMultiderivative time integration methods preserving nonlinear functionals via relaxation-
dc.typeJournal Contribution-
dc.identifier.epage56-
dc.identifier.issue1-
dc.identifier.spage27-
dc.identifier.volume19-
local.format.pages30-
local.bibliographicCitation.jcatA1-
dc.description.notesRanocha, H (corresponding author), Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany.-
dc.description.notesmail@ranocha.de; jochen.schuetz@uhasselt.be-
local.publisher.placeUNIV CALIFORNIA, DEPT MATHEMATICS, BERKELEY, CA 94720-3840-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.2140/camcos.2024.19.27-
dc.identifier.isi001273288300002-
dc.identifier.eissn2157-5452-
local.provider.typeCrossRef-
local.description.affiliation[Ranocha, Hendrik] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany.-
local.description.affiliation[Schuetz, Jochen] Hasselt Univ, Fac Sci & Data Sci Inst, Diepenbeek, Belgium.-
local.uhasselt.internationalyes-
item.fullcitationRanocha, Hendrik & SCHUETZ, Jochen (2024) Multiderivative time integration methods preserving nonlinear functionals via relaxation. In: Communications in Applied Mathematics and Computational Science, 19 (1) , p. 27 -56.-
item.fulltextWith Fulltext-
item.contributorRanocha, Hendrik-
item.contributorSCHUETZ, Jochen-
item.accessRightsClosed Access-
crisitem.journal.issn1559-3940-
crisitem.journal.eissn2157-5452-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
multiderivative_relaxation__arXiv.pdfNon Peer-reviewed author version1.12 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.