Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/43321
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBREBELS, Sonny-
dc.contributor.authorCARDEYNAELS, Tom-
dc.contributor.authorJACKERS, Louis-
dc.contributor.authorKuila, Suman-
dc.contributor.authorPENXTEN, Huguette-
dc.contributor.authorSalthouse, Rebecca J.-
dc.contributor.authorDanos, Andrew-
dc.contributor.authorMonkman, Andrew P.-
dc.contributor.authorChampagne, Benoit-
dc.contributor.authorMAES, Wouter-
dc.date.accessioned2024-07-03T08:19:29Z-
dc.date.available2024-07-03T08:19:29Z-
dc.date.issued2024-
dc.date.submitted2024-07-03T07:17:12Z-
dc.identifier.citationJournal of materials chemistry. C (Print), 12 (25) , p. 9255 -9265-
dc.identifier.urihttp://hdl.handle.net/1942/43321-
dc.description.abstractA series of four emissive regio-isomers are synthesized based on the dibenzo[a,c]phenazine-11,12-dicarbonitrile (DBPzCN) acceptor scaffold and a triphenylamine (TPA) donor. Density functional theory is utilized to compare the relative differences in molecular conformation, excited state distributions, and orbital interactions. Steady-state and time-resolved emission spectroscopy reveal strongly contrasting emissive properties and triplet harvesting of the four materials. In zeonex host emission maxima range widely, with differences of over 100 nm. Additionally, isomers 3-TPA-DBPzCN and 4-TPA-DBPzCN show photoluminescence quantum yields (PLQYs) of 46 and 62%, while 1-TPA-DBPzCN and 2-TPA-DBPzCN instead show values <1 and 24%, respectively. Relevant to thermally activated delayed fluorescence (TADF), very small singlet-triplet energy gaps are observed for isomers 2-TPA-DBPzCN and 4-TPA-DBPzCN, with corresponding reverse intersystem crossing (rISC) rates of 0.6 and 1.6 x 10(5) s(-1), respectively. Unique in possessing both fast rISC and a relatively high PLQY, the unconventional 4-TPA-DBPzCN regio-isomer turns out to be an efficient TADF emitter, highlighting the important role of donor-acceptor substitution position in the design of efficient TADF materials targeting specific wavelength ranges.-
dc.description.sponsorshipThe authors thank the Research Foundation – Flanders (FWO Vlaanderen) for financial support through projects G087718N, G0D1521N, I006320N, GOH3816NAUHL, the Scientific Research Community ‘Supramolecular Chemistry and Materials’ (W000620N), postdoctoral fellowship 1284623N (T. Cardeynaels), and PhD scholarship 1SC8621N (S. Brebels). The calculations were performed on the computers of the ‘Consortium des e´quipements de Calcul Intensif (CE´CI)’ (https://www.cecihpc.be), including those of the ‘UNamur Technological Platform of High-Performance Computing (PTCI)’ (https://www. ptci.unamur.be), for which we gratefully acknowledge financial support from the FNRS-FRFC, the Walloon Region, and the University of Namur (Conventions No. GEQ U.G006.15, U.G018.19, U.G011.22, RW/GEQ2016, RW1610468, and RW2110213). S. Kuila and A. P. Monkman are supported by EPSRC grant EP/T02240X/1.-
dc.language.isoen-
dc.publisherROYAL SOC CHEMISTRY-
dc.rightsOpen Access Article. Published on 29 May 2024. Downloaded on 7/3/2024 9:15:28 AM. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence-
dc.titleIsomeric modulation of thermally activated delayed fluorescence in dibenzo[a,c]phenazinebased (deep) red emitters-
dc.typeJournal Contribution-
dc.identifier.epage9265-
dc.identifier.issue25-
dc.identifier.spage9255-
dc.identifier.volume12-
local.format.pages11-
local.bibliographicCitation.jcatA1-
dc.description.notesMaes, W (corresponding author), Hasselt Univ, Inst Mat Res, Design & Synth Organ Semicond DSOS, IMO IMOMEC, Agoralaan 1, B-3590 Diepenbeek, Belgium.; Danos, A (corresponding author), Univ Durham, Dept Phys, OEM Grp, South Rd, Durham DH1 3LE, England.-
dc.description.notesandrew.danos@durham.ac.uk; wouter.maes@uhasselt.be-
local.publisher.placeTHOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND-
dc.relation.referencesE.-L. Hsiang, Z. Yang, Q. Yang, Y.-F. Lan and S.-T. Wu, J. Soc. Inf. Disp., 2021, 29, 446–465. 2 G. Hong, X. Gan, C. Leonhardt, Z. Zhang, J. Seibert, J. M. Busch and S. Bra¨se, Adv. Mater., 2021, 33, 2005630. 3 H. Uoyama, K. Goushi, K. Shizu, H. Nomura and C. Adachi, Nature, 2012, 492, 234–238. 4 M. Vasilopoulou, A. Fakharuddin, F. P. Garcı´a de Arquer, D. G. Georgiadou, H. Kim, A. R. B. Mohd Yusoff, F. Gao, M. K. Nazeeruddin, H. J. Bolink and E. H. Sargent, Nat. Photonics, 2021, 15, 656–669. 5 A. Minotto, P. A. Haigh, G. Łukasiewicz, E. Lunedei, D. T. Gryko, I. Darwazeh and F. Cacialli, Light: Sci. Appl., 2020, 9, 70. 6 Y. Khan, D. Han, A. Pierre, J. Ting, X. Wang, C. M. Lochner, G. Bovo, N. Yaacobi-Gross, C. Newsome, R. Wilson and A. C. Arias, Proc. Natl. Acad. Sci. U. S. A., 2018, 115, E11015–e11024. 7 C.-H. Lin, K. S. Karim and Y.-H. Tai, SID Symposium Digest of Technical Papers, 2020, 51, pp. 1855–1858. 8 C. Lian, M. Piksa, K. Yoshida, S. Persheyev, K. J. Pawlik, K. Matczyszyn and I. D. W. Samuel, npj Flexible Electron., 2019, 3, 18. 9 F. Zhang and B. Z. Tang, Chem. Sci., 2021, 12, 3377–3378. 10 S. Qi, S. Kim, V.-N. Nguyen, Y. Kim, G. Niu, G. Kim, S.-J. Kim, S. Park and J. Yoon, ACS Appl. Mater. Interfaces, 2020, 12, 51293–51301. 11 F. Ni, N. Li, L. Zhan and C. Yang, Adv. Opt. Mater., 2020, 8, 1902187. 12 Y. Yamaguchi, Y. Matsubara, T. Ochi, T. Wakamiya and Z.-I. Yoshida, J. Am. Chem. Soc., 2008, 130, 16442. 13 R. Englman and J. Jortner, Mol. Phys., 1970, 18, 145–164. 14 N. J. Hestand and F. C. Spano, Chem. Rev., 2018, 118, 7069–7163. 15 C. Adachi, Jpn. J. Appl. Phys., 2014, 53, 060101. 16 T. J. Penfold, F. B. Dias and A. P. Monkman, Chem. Commun., 2018, 54, 3926–3935. 17 Y. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook and J. Y. Lee, Chem. Mater., 2017, 29, 1946–1963. 18 X.-K. Chen, CCS Chem., 2020, 2, 1256–1267. 19 Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang and W. Huang, Adv. Mater., 2014, 26, 7931–7958. 20 M. K. Etherington, F. Franchello, J. Gibson, T. Northey, J. Santos, J. S. Ward, H. F. Higginbotham, P. Data, A. Kurowska, P. L. Dos Santos, D. R. Graves, A. S. Batsanov, F. B. Dias, M. R. Bryce, T. J. Penfold and A. P. Monkman, Nat. Commun., 2017, 8, 14987. 21 T. Yang, Z. Cheng, Z. Li, J. Liang, Y. Xu, C. Li and Y. Wang, Adv. Funct. Mater., 2020, 30, 2002681. 22 T. Yang, J. Liang, Y. Cui, Z. Li, X. Peng, S.-J. Su, Y. Wang and C. Li, Adv. Opt. Mater., 2023, 11, 2201191. 23 C. Zhou, Y. Liu, Z. Sun, H. Liu, L. Xu, D. Hu and J. Hu, Dyes Pigm., 2022, 205, 110488. 24 A. Shang, T. Lu, H. Liu, C. Du, F. Liu, D. Jiang, J. Min, H. Zhang and P. Lu, J. Mater. Chem. C, 2021, 9, 7392–7399. 25 K. Zhang, J. Fan, C.-K. Wang and L. Lin, Phys. Chem. Chem. Phys., 2021, 23, 21883–21892. 26 S. Kothavale, W. J. Chung and J. Y. Lee, J. Mater. Chem. C, 2022, 10, 6043–6049. 27Z.Yang,X.Ge,W.Li,Z.Mao,X.Chen,C.Xu,F.LongGu, Y. Zhang, J. Zhao and Z. Chi, Chem.Eng.J., 2022, 442, 136219. 28 W.Xie, M.Li, X. Peng, W. Qiu, Y. Gan, Z. Chen, Y. He, W. Li, K. Liu, L. Wang, Q. Gu and S.-J. Su, Chem. Eng. J., 2021, 425, 131510. 29 B. Liu, W.-C. Chen, R. Zhang, Q. Liu, H. Wei, W.-L. Wu, L. Xing, R. Wang, Y. Liu, S. Ji, H.-L. Zhang and Y. Huo, Dyes Pigm., 2023, 216, 111314. 30 N. A. Kukhta, H. F. Higginbotham, T. Matulaitis, A. Danos, A. N. Bismillah, N. Haase, M. K. Etherington, D. S. Yufit, P. R. McGonigal, J. V. Grazˇulevicˇius and A. P. Monkman, J. Mater. Chem. C, 2019, 7, 9184–9194. 31 A. Danos, D. Gudeika, N. A. Kukhta, R. Lygaitis, M. Colella, H. F. Higginbotham, A. N. Bismillah, P. R. McGonigal, J. V. Grazulevicius and A. P. Monkman, J. Mater. Chem. C, 2022, 10, 4737–4747. 32 Y.Xiao, H. Wang,Z. Xie, M. Shen, R. Huang, Y.Miao, G. Liu, T. Yu and W. Huang, Chem. Sci., 2022, 13, 8906–8923. 33 S. Kothavale, J. Lim and J. Yeob Lee, Chem. Eng. J., 2022, 431, 134216. 34 H. Ye, J. Yang, K. Stavrou, M. Li, F. Liu, F. Li, S.-J. Su and A. P. Monkman, Dyes Pigm., 2023, 219, 111568. 35 K.Rayappa Naveen, K. Prabhu CP, R. Braveenth and J. Hyuk Kwon, Chem.– Eur. J., 2022, 28, e202103532. 36 S.Wang,Y. Miao, X.Yan, K. Yeand Y.Wang,J. Mater. Chem. C, 2018, 6, 6698–6704. 37 U. Balijapalli, R. Nagata, N. Yamada, H. Nakanotani, M. Tanaka, A. D’Ale´o, V. Placide, M. Mamada, Y. Tsuchiya and C. Adachi, Angew. Chem., Int. Ed., 2021, 60, 8477–8482. 38 T. Yang, B. Liang, Z. Cheng, C. Li, G. Lu and Y. Wang, J. Phys. Chem. C, 2019, 123, 18585–18592. 39 Y.-Y. Wang, Y.-L. Zhang, K. Tong, L. Ding, J. Fan and L.-S. Liao, J. Mater. Chem. C, 2019, 7, 15301–15307. 40 T. Cardeynaels, S. Paredis, A. Danos, D. Vanderzande, A. P. Monkman, B. Champagne and W. Maes, Dyes Pigm., 2021, 186, 109022. 41 S. Kothavale, W. J. Chung and J. Y. Lee, J. Mater. Chem. C, 2020, 8, 7059–7066. 42 F.-M. Xie, H.-Z. Li, G.-L. Dai, Y.-Q. Li, T. Cheng, M. Xie, J.-X. Tang and X. Zhao, ACS Appl. Mater. Interfaces, 2019, 11, 26144–26151. 43Y.-L.Zhang,Q.Ran,Q.Wang,Y.Liu,C.Ha J. Fan and L. S. Liao, Adv. Mater., 2019, 31, 1902368. ¨nisch, S. Reineke, 44 J.-L. He, F.-C. Kong, B. Sun, X.-J. Wang, Q.-S. Tian, J. Fan and L.-S. Liao, Chem. Eng. J., 2021, 424, 130470. 45 H. Wang, J. X. Chen, X. C. Fan, Y. C. Cheng, L. Zhou, X. Zhang, J. Yu, K. Wang and X. H. Zhang, ACS Appl. Mater. Interfaces, 2023, 15, 1685–1692. J. Mater. Chem. C 46 F.-M. Xie, X.-Y. Zeng, J.-X. Zhou, Z.-D. An, W. Wang, Y.-Q. Li, X.-H. Zhang and J.-X. Tang, J. Mater. Chem. C, 2020, 8, 15728–15734. 47 R. Furue, K. Matsuo, Y. Ashikari, H. Ooka, N. Amanokura and T. Yasuda, Adv. Opt. Mater., 2018, 6, 1701147. 48 A. Urbano, A. M. del Hoyo, A. Martı´nez-Carrio´n and M. C. Carren˜o, Org. Lett., 2019, 21, 4623–4627. 49 T. Matsushima, S. Kobayashi and S. Watanabe, J. Org. Chem., 2016, 81, 7799–7806. 50 T. Cardeynaels, S. Paredis, J. Deckers, S. Brebels, D. Vanderzande, W. Maes and B. Champagne, Phys. Chem. Chem. Phys., 2020, 22, 16387–16399. 51 T. J. Penfold, J. Phys. Chem. C, 2015, 119, 13535–13544. 52 S. Hirata and M. Head-Gordon, Chem. Phys. Lett., 1999, 314, 291–299. 53 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian16 Revision A03, Gaussian, Inc., Wallingford CT, 2016. 54 T. Le Bahers, C. Adamo and I. Ciofini, J. Chem. Theory Comput., 2011, 7, 2498–2506. 55 X. Gao, S. Bai, D. Fazzi, T. Niehaus, M. Barbatti and W. Thiel, J. Chem. Theory Comput., 2017, 13, 515–524. 56W.Shipan,Z.Cheng,X.Song,X.Yan,K.Ye,Y.Liu,G.Yang and Y. Wang, ACS Appl. Mater. Interfaces, 2017, 9, 9892–9901. 57 H. S. Kim, S. H. Lee, S. Yoo and C. Adachi, Nat. Commun., 2024, 15, 2267. 58 M. A. El-Sayed, J. Chem. Phys., 2004, 38, 2834–2838. 59 M. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold and A. P. Monkman, Nat. Commun., 2016, 7, 13680. 60 J. Gibson, A. P. Monkman and T. J. Penfold, Chem. Phys. Chem., 2016, 17, 2956–2961. 61 S. Paredis, T. Cardeynaels, S. Brebels, J. Deckers, S. Kuila, A. Lathouwers, M. Van Landeghem, K. Vandewal, A. Danos, A. P. Monkman, B. Champagne and W. Maes, Phys. Chem. Chem. Phys., 2023, 25, 29842–29849. 62 J. Gibson and T. J. Penfold, Phys. Chem. Chem. Phys., 2017, 19, 8428–8434. 63 P. K. Samanta, D. Kim, V. Coropceanu and J.-L. Bre ´das, J. Am. Chem. Soc., 2017, 139, 4042–4051. 64 N. Notsuka, H. Nakanotani, H. Noda, K. Goushi and C. Adachi, J. Phys. Chem. Lett., 2020, 11, 562–566. 65 Z. Yang, Z. Mao, C. Xu, X. Chen, J. Zhao, Z. Yang, Y. Zhang, W. Wu, S. Jiao, Y. Liu, M. P. Aldred and Z. Chi, Chem. Sci., 2019, 10, 8129–8134. 66 K. Stavrou, L. G. Franca and A. P. Monkman, ACS Appl. Electron. Mater., 2020, 2, 2868–2881. 67 M. A. Baldo and S. R. Forrest, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 62, 10958–10966. 68 Q. Zhang, T. Komino, S. Huang, S. Matsunami, K. Goushi and C. Adachi, Adv. Funct. Mater., 2012, 22, 2327–2336. 69 S. Bagnich, A. Rudnick, P. Schroegel, P. Strohriegl and A. Ko¨hler, Philos. Trans. R. Soc. London, Ser. A, 2015, 373. 70 F. B. Dias, J. Santos, D. R. Graves, P. Data, R. S. Nobuyasu, M. A. Fox, A. S. Batsanov, T. Palmeira, M. N. Berberan-Santos, M. R. Bryce and A. P. Monkman, Adv. Sci., 2016, 3, 1600080. 71 D. Kelly, L. G. Franca, K. Stavrou, A. Danos and A. P. Monkman, J. Phys. Chem. Lett., 2022, 13, 6981–6986. 72 N. Haase, A. Danos, C. Pflumm, A. Morherr, P. Stachelek, A. Mekic, W. Bru¨tting and A. P. Monkman, J. Phys. Chem. C, 2018, 122, 29173–29179.-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1039/d4tc01214c-
dc.identifier.isi001243052200001-
local.provider.typewosris-
local.description.affiliation[Brebels, Sonny; Cardeynaels, Tom; Jackers, Louis; Penxten, Huguette; Maes, Wouter] Hasselt Univ, Inst Mat Res, Design & Synth Organ Semicond DSOS, IMO IMOMEC, Agoralaan 1, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Brebels, Sonny; Cardeynaels, Tom; Jackers, Louis; Penxten, Huguette; Maes, Wouter] IMEC, IMOMEC Div, Wetenschaps Pk 1, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Brebels, Sonny; Cardeynaels, Tom; Jackers, Louis; Penxten, Huguette; Maes, Wouter] Energyville, Thor Pk, B-3600 Genk, Belgium.-
local.description.affiliation[Cardeynaels, Tom; Champagne, Benoit] Univ Namur, Namur Inst Struct Matter, Theoret & Struct Phys Chem Unit, Lab Theoret Chem, Rue Bruxelles 61, B-5000 Namur, Belgium.-
local.description.affiliation[Kuila, Suman; Danos, Andrew; Monkman, Andrew P.] Univ Durham, Dept Phys, OEM Grp, South Rd, Durham DH1 3LE, England.-
local.description.affiliation[Salthouse, Rebecca J.] Univ Durham, Dept Chem, South Rd, Durham DH1 3LE, England.-
local.uhasselt.internationalyes-
item.accessRightsOpen Access-
item.contributorBREBELS, Sonny-
item.contributorCARDEYNAELS, Tom-
item.contributorJACKERS, Louis-
item.contributorKuila, Suman-
item.contributorPENXTEN, Huguette-
item.contributorSalthouse, Rebecca J.-
item.contributorDanos, Andrew-
item.contributorMonkman, Andrew P.-
item.contributorChampagne, Benoit-
item.contributorMAES, Wouter-
item.fullcitationBREBELS, Sonny; CARDEYNAELS, Tom; JACKERS, Louis; Kuila, Suman; PENXTEN, Huguette; Salthouse, Rebecca J.; Danos, Andrew; Monkman, Andrew P.; Champagne, Benoit & MAES, Wouter (2024) Isomeric modulation of thermally activated delayed fluorescence in dibenzo[a,c]phenazinebased (deep) red emitters. In: Journal of materials chemistry. C (Print), 12 (25) , p. 9255 -9265.-
item.fulltextWith Fulltext-
crisitem.journal.issn2050-7526-
crisitem.journal.eissn2050-7534-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.