Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/43322
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJANSSENS, Arne-
dc.contributor.authorVaes, Bert-
dc.contributor.authorVan Pottelbergh, Gijs-
dc.contributor.authorLIBIN, Pieter-
dc.contributor.authorNEYENS, Thomas-
dc.date.accessioned2024-07-03T09:18:52Z-
dc.date.available2024-07-03T09:18:52Z-
dc.date.issued2024-
dc.date.submitted2024-07-03T07:14:50Z-
dc.identifier.citationSpatial and spatio-temporal epidemiology (Print), 49 (Art N° 100654)-
dc.identifier.urihttp://hdl.handle.net/1942/43322-
dc.description.abstractBackground: Spatial modeling of disease risk using primary care registry data is promising for public health surveillance. However, it remains unclear to which extent challenges such as spatially disproportionate sampling and practice-specific reporting variation affect statistical inference. Methods: Using lower respiratory tract infection data from the INTEGO registry, modeled with a logistic model incorporating patient characteristics, a spatially structured random effect at municipality level, and an unstructured random effect at practice level, we conducted a case and simulation study to assess the impact of these challenges on spatial trend estimation. Results: Even with spatial imbalance and practice-specific reporting variation, the model performed well. Performance improved with increasing spatial sample balance and decreasing practice-specific variation. Conclusion: Our findings indicate that, with correction for reporting efforts, primary care registries are valuable for spatial trend estimation. The diversity of patient locations within practice populations plays an important role.-
dc.description.sponsorshipFunding statement INTEGO is funded regularly by the Flemish Government (Ministry of Health and Welfare). TN gratefully acknowledges funding by the Internal Funds KU Leuven (project number 3M190682). PJKL acknowledges support from the Research Foundation Flanders (FWO, fwo.be) (postdoctoral fellowship 1242021N) and the Research council of the Vrije Universiteit Brussel (OZR-VUB) via grant number OZR3863BOF. Acknowledgments We thank the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government, which provided the resources and services used to perform the simulations in this work.-
dc.language.isoen-
dc.publisherELSEVIER SCI LTD-
dc.rights2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/bync/4.0/)-
dc.subject.otherPrimary care registry data-
dc.subject.otherSpatial epidemiology-
dc.subject.otherBayesian spatial modeling-
dc.subject.otherLower respiratory tract infections-
dc.subject.otherPassive sentinel surveillance-
dc.subject.otherSimulation study-
dc.titleModel-based disease mapping using primary care registry data-
dc.typeJournal Contribution-
dc.identifier.volume49-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notesJanssens, A (corresponding author), Kapucijnenvoer 7 Blok H,Bus 7001, B-3000 Leuven, Belgium.-
dc.description.notesarne.janssens@kuleuven.be; bert.vaes@kuleuven.be;-
dc.description.notesgijs.vanpottelbergh@kuleuven.be; pieter.libin@vub.be;-
dc.description.notesthomas.neyens@uhasselt.be-
local.publisher.place125 London Wall, London, ENGLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr100654-
dc.identifier.doi10.1016/j.sste.2024.100654-
dc.identifier.isi001242912800001-
dc.contributor.orcidNeyens, Thomas/0000-0003-2364-7555-
local.provider.typewosris-
local.description.affiliation[Janssens, Arne; Vaes, Bert; Van Pottelbergh, Gijs] Katholieke Univ Leuven, Fac Med, Acad Ctr Gen Practice, Dept Publ Hlth & Primary Care, Kapucijnenvoer 35, B-3000 Leuven, Belgium.-
local.description.affiliation[Libin, Pieter J. K.] Hasselt Univ, Data Sci Inst, I BioStat, Martelarenlaan 42, B-3500 Hasselt, Belgium.-
local.description.affiliation[Libin, Pieter J. K.] Vrije Univ Brussel, Dept Comp Sci, Artificial Intelligence Lab, Brussels, Belgium.-
local.description.affiliation[Libin, Pieter J. K.] Katholieke Univ Leuven, Rega Inst Med Res Clin & Epidemiol Virol, Dept Microbiol & Immunol, Leuven, Belgium.-
local.description.affiliation[Neyens, Thomas] Katholieke Univ Leuven, Fac Med, Dept Publ Hlth & Primary Care, L BioStat, Kapucijnenvoer 35, B-3000 Leuven, Belgium.-
local.description.affiliation[Janssens, Arne] Kapucijnenvoer 7 Blok H,Bus 7001, B-3000 Leuven, Belgium.-
local.uhasselt.internationalno-
item.contributorJANSSENS, Arne-
item.contributorVaes, Bert-
item.contributorVan Pottelbergh, Gijs-
item.contributorLIBIN, Pieter-
item.contributorNEYENS, Thomas-
item.fullcitationJANSSENS, Arne; Vaes, Bert; Van Pottelbergh, Gijs; LIBIN, Pieter & NEYENS, Thomas (2024) Model-based disease mapping using primary care registry data. In: Spatial and spatio-temporal epidemiology (Print), 49 (Art N° 100654).-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1877-5845-
crisitem.journal.eissn1877-5853-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Model-based disease mapping using primary care registry data.pdfPublished version11.71 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.