Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/43322
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | JANSSENS, Arne | - |
dc.contributor.author | Vaes, Bert | - |
dc.contributor.author | Van Pottelbergh, Gijs | - |
dc.contributor.author | LIBIN, Pieter | - |
dc.contributor.author | NEYENS, Thomas | - |
dc.date.accessioned | 2024-07-03T09:18:52Z | - |
dc.date.available | 2024-07-03T09:18:52Z | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-03T07:14:50Z | - |
dc.identifier.citation | Spatial and spatio-temporal epidemiology (Print), 49 (Art N° 100654) | - |
dc.identifier.uri | http://hdl.handle.net/1942/43322 | - |
dc.description.abstract | Background: Spatial modeling of disease risk using primary care registry data is promising for public health surveillance. However, it remains unclear to which extent challenges such as spatially disproportionate sampling and practice-specific reporting variation affect statistical inference. Methods: Using lower respiratory tract infection data from the INTEGO registry, modeled with a logistic model incorporating patient characteristics, a spatially structured random effect at municipality level, and an unstructured random effect at practice level, we conducted a case and simulation study to assess the impact of these challenges on spatial trend estimation. Results: Even with spatial imbalance and practice-specific reporting variation, the model performed well. Performance improved with increasing spatial sample balance and decreasing practice-specific variation. Conclusion: Our findings indicate that, with correction for reporting efforts, primary care registries are valuable for spatial trend estimation. The diversity of patient locations within practice populations plays an important role. | - |
dc.description.sponsorship | Funding statement INTEGO is funded regularly by the Flemish Government (Ministry of Health and Welfare). TN gratefully acknowledges funding by the Internal Funds KU Leuven (project number 3M190682). PJKL acknowledges support from the Research Foundation Flanders (FWO, fwo.be) (postdoctoral fellowship 1242021N) and the Research council of the Vrije Universiteit Brussel (OZR-VUB) via grant number OZR3863BOF. Acknowledgments We thank the VSC (Flemish Supercomputer Center), funded by the Research Foundation Flanders (FWO) and the Flemish Government, which provided the resources and services used to perform the simulations in this work. | - |
dc.language.iso | en | - |
dc.publisher | ELSEVIER SCI LTD | - |
dc.rights | 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/bync/4.0/) | - |
dc.subject.other | Primary care registry data | - |
dc.subject.other | Spatial epidemiology | - |
dc.subject.other | Bayesian spatial modeling | - |
dc.subject.other | Lower respiratory tract infections | - |
dc.subject.other | Passive sentinel surveillance | - |
dc.subject.other | Simulation study | - |
dc.title | Model-based disease mapping using primary care registry data | - |
dc.type | Journal Contribution | - |
dc.identifier.volume | 49 | - |
local.format.pages | 9 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Janssens, A (corresponding author), Kapucijnenvoer 7 Blok H,Bus 7001, B-3000 Leuven, Belgium. | - |
dc.description.notes | arne.janssens@kuleuven.be; bert.vaes@kuleuven.be; | - |
dc.description.notes | gijs.vanpottelbergh@kuleuven.be; pieter.libin@vub.be; | - |
dc.description.notes | thomas.neyens@uhasselt.be | - |
local.publisher.place | 125 London Wall, London, ENGLAND | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.artnr | 100654 | - |
dc.identifier.doi | 10.1016/j.sste.2024.100654 | - |
dc.identifier.isi | 001242912800001 | - |
dc.contributor.orcid | Neyens, Thomas/0000-0003-2364-7555 | - |
local.provider.type | wosris | - |
local.description.affiliation | [Janssens, Arne; Vaes, Bert; Van Pottelbergh, Gijs] Katholieke Univ Leuven, Fac Med, Acad Ctr Gen Practice, Dept Publ Hlth & Primary Care, Kapucijnenvoer 35, B-3000 Leuven, Belgium. | - |
local.description.affiliation | [Libin, Pieter J. K.] Hasselt Univ, Data Sci Inst, I BioStat, Martelarenlaan 42, B-3500 Hasselt, Belgium. | - |
local.description.affiliation | [Libin, Pieter J. K.] Vrije Univ Brussel, Dept Comp Sci, Artificial Intelligence Lab, Brussels, Belgium. | - |
local.description.affiliation | [Libin, Pieter J. K.] Katholieke Univ Leuven, Rega Inst Med Res Clin & Epidemiol Virol, Dept Microbiol & Immunol, Leuven, Belgium. | - |
local.description.affiliation | [Neyens, Thomas] Katholieke Univ Leuven, Fac Med, Dept Publ Hlth & Primary Care, L BioStat, Kapucijnenvoer 35, B-3000 Leuven, Belgium. | - |
local.description.affiliation | [Janssens, Arne] Kapucijnenvoer 7 Blok H,Bus 7001, B-3000 Leuven, Belgium. | - |
local.uhasselt.international | no | - |
item.contributor | JANSSENS, Arne | - |
item.contributor | Vaes, Bert | - |
item.contributor | Van Pottelbergh, Gijs | - |
item.contributor | LIBIN, Pieter | - |
item.contributor | NEYENS, Thomas | - |
item.fullcitation | JANSSENS, Arne; Vaes, Bert; Van Pottelbergh, Gijs; LIBIN, Pieter & NEYENS, Thomas (2024) Model-based disease mapping using primary care registry data. In: Spatial and spatio-temporal epidemiology (Print), 49 (Art N° 100654). | - |
item.fulltext | With Fulltext | - |
item.accessRights | Open Access | - |
crisitem.journal.issn | 1877-5845 | - |
crisitem.journal.eissn | 1877-5853 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Model-based disease mapping using primary care registry data.pdf | Published version | 11.71 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.