Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/4333
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | ROUSSEAU, Ronald | - |
dc.date.accessioned | 2007-12-20T15:48:26Z | - |
dc.date.available | 2007-12-20T15:48:26Z | - |
dc.date.issued | 1992 | - |
dc.identifier.citation | Information processing and management, 28(1). p. 45-51 | - |
dc.identifier.uri | http://hdl.handle.net/1942/4333 | - |
dc.description.abstract | Abstract We show that the length of the Lorenz curve is a concentration measure which is left invariant by the operation of passing to the dual IPP. Moreover, we present direct simple proofs of this result and the one obtained by Egghe in the case of a finite, discrete number of cells. This leads to a new understanding of Egghe-duality. | - |
dc.language.iso | en | - |
dc.title | Two remarks on the preceding paper by L. Egghe | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 51 | - |
dc.identifier.issue | 1 | - |
dc.identifier.spage | 45 | - |
dc.identifier.volume | 28 | - |
dc.bibliographicCitation.oldjcat | - | |
dc.identifier.doi | 10.1016/0306-4573(92)90091-D | - |
item.fulltext | No Fulltext | - |
item.fullcitation | ROUSSEAU, Ronald (1992) Two remarks on the preceding paper by L. Egghe. In: Information processing and management, 28(1). p. 45-51. | - |
item.accessRights | Closed Access | - |
item.contributor | ROUSSEAU, Ronald | - |
Appears in Collections: | Research publications |
SCOPUSTM
Citations
4
checked on Oct 21, 2025
WEB OF SCIENCETM
Citations
3
checked on Oct 21, 2025
Google ScholarTM
Check
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.