Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/43400
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorNesladek, Milos-
dc.contributor.advisorRemes, Zdenek-
dc.contributor.advisorBourgeois, Emillie-
dc.contributor.authorSOUCEK, Josef-
dc.date.accessioned2024-07-18T09:14:07Z-
dc.date.available2024-07-18T09:14:07Z-
dc.date.issued2024-
dc.date.submitted2024-07-09T08:31:02Z-
dc.identifier.urihttp://hdl.handle.net/1942/43400-
dc.description.abstractRecent developments of engineered nitrogen-vacancy (NV) centres in diamonds offer promising avenues for the creation of sensitive nanoscale probes, pivotal for quantum measurements and diagnostic applications in nanomedicine. The aim of this work is to enable these sensor applications by studying NV photodynamics, investigating the effects of the environment and developing advanced quantum sensor chips. In this thesis, we include both fluorescent nanodiamond particles (NDs) and NV-containing single crystal diamond. Initially, we study the fundamental physics governing signal generation, exploring the photodynamics of a single NV center and analysing its spin-contrast properties. Subsequently, we probe the impact of the crystal environment on the photoelectrical signals and quantum efficiency, determining the possible origins of non-standard phenomena such as positive photocurrent detected magnetic resonance (PDMR). We demonstrate the usage of ground-state level anti-crossing (GSLAC) in photoelectrical spin-state readout. In the second part of the thesis, we focused on the development of a quantum chip for both single-crystal diamond and ND particles. Two types of prototypes were designed and fabricated, with numerical modelling employed to elucidate microwave field distribution and resonance patterns. For single crystal diamond chips, in-depth testing is conducted to mitigate microwave-induced interference, which is critical for detecting low photocurrents from single NV centres. Additionally, we explore the potential for integrating this chip into a microfluidic chamber. The chip for the nanodiamond particles was evaluated for its heating properties, which are crucial for keeping neurons alive, using theoretical calculations and experimental measurements using a nanodiamond probe. Furthermore, we also perform the in vitro sensing of the magnetic field at the attached nanodiamonds to the neuron cells. In summary, our research represents a significant step forward in harnessing the capabilities of engineered NV centers in diamond for quantum sensing applications, offering promising prospects in both fundamental research and practical diagnostics in nanomedicine.-
dc.language.isoen-
dc.titleMagnetic field imaging in biological systems with nanometric resolution-
dc.typeTheses and Dissertations-
local.bibliographicCitation.jcatT1-
dc.relation.references[1] JIANG, Zeyu, Meihua ZHANG, Peifeng LI, Yin WANG and Qinrui FU. Nanomaterial-based CT contrast agents and their applications in image-guided therapy. Theranostics [online]. 2023, 13(2), 483–509. ISSN 1838-7640. Available at: doi:10.7150/thno.79625 [2] PERUNICIC, V. S., C. D. HILL, L. T. HALL and L. C.L. HOLLENBERG. A quantum spin-probe molecular microscope. Nature Communications [online]. 2016, 7. ISSN 20411723. Available at: doi:10.1038/ncomms12667 [3] FAGALY, R. L. Superconducting quantum interference device instruments and applications. Review of Scientific Instruments [online]. 2006, 77(10). ISSN 0034-6748. Available at: doi:10.1063/1.2354545 [4] BOTO, Elena, Niall HOLMES, James LEGGETT, Gillian ROBERTS, Vishal SHAH, Sofie S. MEYER, Leonardo Duque MUÑOZ, Karen J. MULLINGER, Tim M. TIERNEY, Sven BESTMANN, Gareth R. BARNES, Richard BOWTELL and Matthew J. BROOKES. Moving magnetoencephalography towards real-world applications with a wearable system. Nature [online]. 2018, 555(7698), 657–661. ISSN 0028-0836. Available at: doi:10.1038/nature26147 [5] HANSEN, Nikolaj Winther, James Luke WEBB, Luca TROISE, Christoffer OLSSON, Leo TOMASEVIC, Ovidiu BRINZA, Jocelyn ACHARD, Robert STAACKE, Michael KIESCHNICK, Jan MEIJER, Axel THIELSCHER, Hartwig Roman SIEBNER, Kirstine BERG-SØRENSEN, Jean-François PERRIER, Alexander HUCK and Ulrik Lund ANDERSEN. Microscopic-scale magnetic recording of brain neuronal electrical activity using a diamond quantum sensor. Scientific Reports [online]. 2023, 13(1), 12407. ISSN 2045-2322. Available at: doi:10.1038/s41598-023-39539-y [6] BOURGEOIS, E., A. JARMOLA, P. SIYUSHEV, M. GULKA, J. HRUBY, F. JELEZKO, D. BUDKER and M. NESLADEK. Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications [online]. 2015, 6(1), 1–8. ISSN 20411723. Available at: doi:10.1038/ncomms9577 [7] MCGUINNESS, L. P., Y. YAN, A. STACEY, D. A. SIMPSON, L. T. HALL, D. MACLAURIN, S. PRAWER, P. MULVANEY, J. WRACHTRUP, F. CARUSO, R. E. SCHOLTEN and L. C. L. HOLLENBERG. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotechnology [online]. 2011, 6(6), 358–363. ISSN 1748-3387. Available at: doi:10.1038/nnano.2011.64 [8] PATAPOUTIAN, Ardem, Andrea M PEIER, Gina M STORY and Veena VISWANATH. ThermoTRP channels and beyond: mechanisms of temperature sensation. Nature reviews. Neuroscience [online]. 2003, 4(7), 529–39. ISSN 1471-003X. Available at: doi:10.1038/nrn1141 [9] ZHENG, Jie. Molecular mechanism of TRP channels. Comprehensive Physiology [online]. 2013, 3(1), 221–42. ISSN 2040-4603. Available at: doi:10.1002/cphy.c120001 [10] VOETS, Thomas, Karel TALAVERA, Grzegorz OWSIANIK and Bernd NILIUS. Sensing with TRP channels. Nature chemical biology [online]. 2005, 1(2), 85–92. ISSN 1552-4450. Available at: doi:10.1038/nchembio0705-85 [11] MIYOSHI, Kazuhisa. Structures and mechanical properties of natural and synthetic diamonds. New Diamond and Frontier Carbon Technology [online]. 1998. ISSN 13449931. Available at: doi:10.1201/9781420027068.ch8 [12] MORA, Adrián Serrano, Sean T. MCBEATH, Clément A. CID, Michael R. HOFFMANN and Nigel J.D. GRAHAM. Diamond electrode facilitated electrosynthesis of water and wastewater treatment oxidants. Current Opinion in Electrochemistry [online]. 2022, 32, 100899. ISSN 24519103. Available at: doi:10.1016/j.coelec.2021.100899 [13] WORT, Chris J.H. and Richard S. BALMER. Diamond as an electronic material [online]. 2008. ISSN 13697021. Available at: doi:10.1016/S1369-7021(07)70349-8 [14] MILDREN, Rich P. and James R. RABEAU. Optical Engineering of Diamond [online]. 2013. ISBN 9783527411023. Available at: doi:10.1002/9783527648603 [15] GERSTENHABER, Jonathan A, Cezary MARCINKIEWICZ, Frank C BARONE, Mark STERNBERG, Michael R D’ANDREA, Peter I LELKES and Giora Z FEUERSTEIN. <p>Biocompatibility studies of fluorescent diamond particles-(NV)∼800nm (part V): in vitro kinetics and in vivo localization in rat liver following long-term exposure</p>. International Journal of Nanomedicine [online]. 2019. ISSN 1178-2013. Available at: doi:10.2147/ijn.s209663 [16] KOIZUMI, Satoshi, Christoph NEBEL and Milos NESLADEK. Physics and Applications of CVD Diamond [online]. 2008. ISBN 9783527408016. Available at: doi:10.1002/9783527623174 [17] SCHRAND, Amanda M., Suzanne A. Ciftan HENS and Olga A. SHENDEROVA. Nanodiamond Particles: Properties and Perspectives for Bioapplications. Critical Reviews in Solid State and Materials Sciences [online]. 2009, 34(1–2), 18–74. ISSN 1040-8436. Available at: doi:10.1080/10408430902831987 [18] MISHRA, Raghvendra, Anuj Kumar CHHALODIA and Santosh K. TIWARI. Recent progress in nanodiamonds: Synthesis, properties and their potential applications. Veruscript Functional Nanomaterials [online]. 2018, 2, 8W2EG0. Available at: doi:10.22261/8w2eg0 [19] MOCHALIN, Vadym N., Olga SHENDEROVA, Dean HO and Yury GOGOTSI. The properties and applications of nanodiamonds [online]. 2012. ISSN 17483395. Available at: doi:10.1038/nnano.2011.209 [20] ARNAULT, Jean Charles. Nanodiamonds: Advanced material analysis, properties and applications. 2017. ISBN 9780323430326. [21] HUANG, Junjie, Yazhou ZHANG, Defa WANG, Bo REN, Panying SONG, Guopeng ZHANG, Bin CAI and Zhongxia LIU. Effect of ball milling process on the mechanical and thermal properties of the nanodiamond/2024Al composites. Micron [online]. 2021, 148, 103104 [accessed. 2024-02-01]. ISSN 0968-4328. Available at: doi:10.1016/J.MICRON.2021.103104 [22] SU, Long Jyun, Chia Yi FANG, Yu Tang CHANG, Kuan Ming CHEN, Yueh Chung YU, Jui Hung HSU and Huan Cheng CHANG. Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds. Nanotechnology [online]. 2013, 24(31), 315702 [accessed. 2024-02-01]. ISSN 0957-4484. Available at: doi:10.1088/0957-4484/24/31/315702 [23] CHRISTOPHER NEBEL and JUERGEN RISTEIN. Thin-Film Diamond I: (part of the Semiconductors and Semimetals Series). 1st ed. 2004. [24] ZAITSEV, Alexander M. Optical Properties of Diamond [online]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. ISBN 978-3-642-08585-7. Available at: doi:10.1007/978-3-662-04548-0 [25] DOHERTY, Marcus W., Neil B. MANSON, Paul DELANEY, Fedor JELEZKO, Jörg WRACHTRUP and Lloyd C.L. HOLLENBERG. The nitrogen-vacancy colour centre in diamond [online]. 1. July 2013 [accessed. 2019-11-14]. ISSN 03701573. Available at: doi:10.1016/j.physrep.2013.02.001 [26] IAKOUBOVSKII, K, G J ADRIAENSSENS and M NESLADEK. Photochromism of vacancy-related centres in diamond. Journal of Physics: Condensed Matter [online]. 2000, 12(2), 189–199. ISSN 0953-8984. Available at: doi:10.1088/0953-8984/12/2/308 [27] DOHERTY, Marcus W., Neil B. MANSON, Paul DELANEY, Fedor JELEZKO, Jörg WRACHTRUP and Lloyd C.L. HOLLENBERG. The nitrogen-vacancy colour centre in diamond [online]. 1. July 2013. ISSN 03701573. Available at: doi:10.1016/j.physrep.2013.02.001 [28] LESIK, M., J. P. TETIENNE, A. TALLAIRE, J. ACHARD, V. MILLE, A. GICQUEL, J. F. ROCH and V. JACQUES. Perfect preferential orientation of nitrogen-vacancy defects in a synthetic diamond sample. Applied Physics Letters [online]. 2014. ISSN 00036951. Available at: doi:10.1063/1.4869103 [29] REMES, Z., J. MICOVA, P. KRIST, D. CHVATIL, R. EFFENBERG and M. NESLADEK. N‐V‐related fluorescence of the monoenergetic high‐energy electron‐irradiated diamond nanoparticles. physica status solidi (a) [online]. 2015, 212(11), 2519–2524. ISSN 1862-6300. Available at: doi:10.1002/pssa.201532180 [30] ACOSTA, Victor Marcel. Optical Magnetometry with Nitrogen-Vacancy Centers in Diamond. 2011. [31] MITA, Yoshimi. Change of absorption spectra in type-I b diamond with heavy neutron irradiation. Physical Review B [online]. 1996, 53(17), 11360–11364. ISSN 0163-1829. Available at: doi:10.1103/PhysRevB.53.11360 [32] DAVIES G. and HAMER M. F. Optical studies of the 1.945 eV vibronic band in diamond. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences [online]. 1976, 348(1653), 285–298. ISSN 0080-4630. Available at: doi:10.1098/rspa.1976.0039 [33] IAKOUBOVSKII, K, G J ADRIAENSSENS and M NESLADEK. Photochromism of vacancy-related centres in diamond. Journal of Physics: Condensed Matter [online]. 2000, 12(2), 189–199. ISSN 0953-8984. Available at: doi:10.1088/0953-8984/12/2/308 [34] LOUBSER, J.H.N. and J.A. VAN WYK. Optical spin-polarisation in a triplet state in irradiated and annealed type 1b diamonds. In: Diamond Research. 1977. [35] LOUBSER, J H N and J A van WYK. Electron spin resonance in the study of diamond. Reports on Progress in Physics [online]. 1978, 41(8), 1201–1248. ISSN 0034-4885. Available at: doi:10.1088/0034-4885/41/8/002 [36] REDMAN, D. A., S. BROWN, R. H. SANDS and S. C. RAND. Spin dynamics and electronic states of N-V centers in diamond by EPR and four-wave-mixing spectroscopy. Physical Review Letters [online]. 1991, 67(24), 3420–3423. ISSN 0031-9007. Available at: doi:10.1103/PhysRevLett.67.3420 [37] GRUBER, A., A. DRÄBENSTEDT, C. TIETZ, L. FLEURY, J. WRACHTRUP and C. von BORCZYSKOWSKI. Scanning Confocal Optical Microscopy and Magnetic Resonance on Single Defect Centers. Science [online]. 1997, 276(5321), 2012–2014. ISSN 0036-8075. Available at: doi:10.1126/science.276.5321.2012 [38] WORT, Chris J.H. and Richard S. BALMER. Diamond as an electronic material. Materials Today [online]. 2008, 11(1–2), 22–28. ISSN 13697021. Available at: doi:10.1016/S1369-7021(07)70349-8 [39] MARCELO ALONSO, EDWARD J. FINN and FRED L. Fundamental University Physics, Vol. 3: Quantum and Statistical Physics. 1st ed. 1968. [40] FUCHS, G. D., V. V. DOBROVITSKI, R. HANSON, A. BATRA, C. D. WEIS, T. SCHENKEL and D. D. AWSCHALOM. Excited-state spectroscopy using single Spin manipulation in diamond. Physical Review Letters [online]. 2008. ISSN 00319007. Available at: doi:10.1103/PhysRevLett.101.117601 [41] Spin operators [online]. [accessed. 2019-11-14]. Available at: http://easyspin.org/easyspin/documentation/spinoperators.html [42] NEUMANN, P., I. JAKOBI, F. DOLDE, C. BURK, R. REUTER, G. WALDHERR, J. HONERT, T. WOLF, A. BRUNNER, J. H. SHIM, D. SUTER, H. SUMIYA, J. ISOYA and J. WRACHTRUP. High-Precision Nanoscale Temperature Sensing Using Single Defects in Diamond. Nano Letters [online]. 2013, 13(6), 2738–2742. ISSN 1530-6984. Available at: doi:10.1021/nl401216y [43] ACOSTA, V. M., E. BAUCH, M. P. LEDBETTER, A. WAXMAN, L.-S. BOUCHARD and D. BUDKER. Temperature Dependence of the Nitrogen-Vacancy Magnetic Resonance in Diamond. Physical Review Letters [online]. 2010, 104(7), 070801. ISSN 0031-9007. Available at: doi:10.1103/PhysRevLett.104.070801 [44] HE, Xing-Fei, Neil B. MANSON and Peter T. H. FISK. Paramagnetic resonance of photoexcited N- V defects in diamond. II. Hyperfine interaction with the 14N nucleus. Physical Review B [online]. 1993, 47(14), 8816–8822. ISSN 0163-1829. Available at: doi:10.1103/PhysRevB.47.8816 [45] GOSS, J. P., R. JONES, S. J. BREUER, P. R. BRIDDON and S. ÖBERG. The Twelve-Line 1.682 eV Luminescence Center in Diamond and the Vacancy-Silicon Complex. Physical Review Letters [online]. 1996, 77(14), 3041–3044. ISSN 0031-9007. Available at: doi:10.1103/PhysRevLett.77.3041 [46] GALI, Ádám. Ab initio theory of the nitrogen-vacancy center in diamond. Nanophotonics [online]. 2019, 8(11), 1907–1943 [accessed. 2023-02-24]. ISSN 2192-8614. Available at: doi:10.1515/nanoph-2019-0154 [47] BARRY, John F., Jennifer M. SCHLOSS, Erik BAUCH, Matthew J. TURNER, Connor A. HART, Linh M. PHAM and Ronald L. WALSWORTH. Sensitivity optimization for NV-diamond magnetometry. Reviews of Modern Physics [online]. 2020, 92(1), 015004 [accessed. 2022-09-15]. ISSN 15390756. Available at: doi:10.1103/RevModPhys.92.015004 [48] WICKENBROCK, Arne, Huijie ZHENG, Lykourgos BOUGAS, Nathan LEEFER, Samer AFACH, Andrey JARMOLA, Victor M. ACOSTA and Dmitry BUDKER. Microwave-free magnetometry with nitrogen-vacancy centers in diamond. Applied Physics Letters [online]. 2016, 109(5), 053505 [accessed. 2019-11-15]. ISSN 0003-6951. Available at: doi:10.1063/1.4960171 [49] ZHENG, Huijie, Zhiyin SUN, Georgios CHATZIDROSOS, Chen ZHANG, Kazuo NAKAMURA, Hitoshi SUMIYA, Takeshi OHSHIMA, Junichi ISOYA, Jörg WRACHTRUP, Arne WICKENBROCK and Dmitry BUDKER. Microwave-Free Vector Magnetometry with Nitrogen-Vacancy Centers along a Single Axis in Diamond. Physical Review Applied [online]. 2020, 13(4), 044023. ISSN 2331-7019. Available at: doi:10.1103/PhysRevApplied.13.044023 [50] Electron Spin Resonance (ESR)- Principle, Instrumentation, Applications [online]. [accessed. 2024-02-26]. Available at: https://microbenotes.com/electron-spin-resonance-esr-principle-instrumentation-applications/ [51] Epifluorescence Microscope Basics | Thermo Fisher Scientific - BE [online]. [accessed. 2024-02-26]. Available at: https://www.thermofisher.com/be/en/home/life-science/cell-analysis/cell-analysis-learning-center/molecular-probes-school-of-fluorescence/imaging-basics/fundamentals-of-fluorescence-microscopy/epifluorescence-microscope-basics.html [52] BUDKER, Dmitry and Derek F. JACKSON KIMBALL. Optical magnetometry [online]. 2011. ISBN 9780511846380. Available at: doi:10.1017/CBO9780511846380 [53] IVÁDY, Viktor, Huijie ZHENG, Arne WICKENBROCK, Lykourgos BOUGAS, Georgios CHATZIDROSOS, Kazuo NAKAMURA, Hitoshi SUMIYA, Takeshi OHSHIMA, Junichi ISOYA, Dmitry BUDKER, Igor A. ABRIKOSOV and Adam GALI. Photoluminescence at the ground-state level anticrossing of the nitrogen-vacancy center in diamond: A comprehensive study. Physical Review B [online]. 2021, 103(3), 035307. ISSN 2469-9950. Available at: doi:10.1103/PhysRevB.103.035307 [54] WANG, Hai-Jing, Chang S. SHIN, Claudia E. AVALOS, Scott J. SELTZER, Dmitry BUDKER, Alexander PINES and Vikram S. BAJAJ. Sensitive magnetic control of ensemble nuclear spin hyperpolarization in diamond. Nature Communications [online]. 2013, 4(1), 1940. ISSN 2041-1723. Available at: doi:10.1038/ncomms2930 [55] DOHERTY, Marcus W., Viktor V. STRUZHKIN, David A. SIMPSON, Liam P. MCGUINNESS, Yufei MENG, Alastair STACEY, Timothy J. KARLE, Russell J. HEMLEY, Neil B. MANSON, Lloyd C.L. HOLLENBERG and Steven PRAWER. Electronic properties and metrology applications of the diamond NV - Center under pressure. Physical Review Letters [online]. 2014. ISSN 00319007. Available at: doi:10.1103/PhysRevLett.112.047601 [56] PLAKHOTNIK, Taras, Marcus W. DOHERTY, Jared H. COLE, Robert CHAPMAN and Neil B. MANSON. All-optical thermometry and thermal properties of the optically detected spin resonances of the NV- center in nanodiamond. Nano Letters [online]. 2014. ISSN 15306992. Available at: doi:10.1021/nl501841d [57] BARRY, John F., Jennifer M. SCHLOSS, Erik BAUCH, Matthew J. TURNER, Connor A. HART, Linh M. PHAM and Ronald L. WALSWORTH. Sensitivity optimization for NV-diamond magnetometry. Reviews of Modern Physics [online]. 2020, 92(1), 015004. ISSN 15390756. Available at: doi:10.1103/RevModPhys.92.015004 [58] MAMIN, H. J., M. KIM, M. H. SHERWOOD, C. T. RETTNER, K. OHNO, D. D. AWSCHALOM and D. RUGAR. Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor. Science [online]. 2013, 339(6119), 557–560. ISSN 0036-8075. Available at: doi:10.1126/science.1231540 [59] GROTZ, Bernhard, Johannes BECK, Philipp NEUMANN, Boris NAYDENOV, Rolf REUTER, Friedemann REINHARD, Fedor JELEZKO, Jörg WRACHTRUP, David SCHWEINFURTH, Biprajit SARKAR and Philip HEMMER. Sensing external spins with nitrogen-vacancy diamond. New Journal of Physics [online]. 2011, 13(5), 055004. ISSN 1367-2630. Available at: doi:10.1088/1367-2630/13/5/055004 [60] PERUNICIC, V. S., C. D. HILL, L. T. HALL and L. C.L. HOLLENBERG. A quantum spin-probe molecular microscope. Nature Communications [online]. 2016, 7 [accessed. 2019-11-14]. ISSN 20411723. Available at: doi:10.1038/ncomms12667 [61] SEGAWA, Takuya F. and Ryuji IGARASHI. Nanoscale quantum sensing with Nitrogen-Vacancy centers in nanodiamonds – A magnetic resonance perspective. Progress in Nuclear Magnetic Resonance Spectroscopy [online]. 2023, 134–135, 20–38. ISSN 00796565. Available at: doi:10.1016/j.pnmrs.2022.12.001 [62] MOHAN, Nitin, Chao Sheng CHEN, Hsiao Han HSIEH, Yi Chun WU and Huan Cheng CHANG. In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans. Nano Letters [online]. 2010, 10(9), 3692–3699 [accessed. 2024-02-05]. ISSN 15306984. Available at: doi:10.1021/NL1021909/SUPPL_FILE/NL1021909_SI_002.AVI [63] SU, Long Jyun, Meng Shiue WU, Yuen Yung HUI, Be Ming CHANG, Lei PAN, Pei Chen HSU, Yit Tsong CHEN, Hong Nerng HO, Yen Hua HUANG, Thai Yen LING, Hsao Hsun HSU and Huan Cheng CHANG. Fluorescent nanodiamonds enable quantitative tracking of human mesenchymal stem cells in miniature pigs. Scientific Reports 2017 7:1 [online]. 2017, 7(1), 1–11 [accessed. 2024-02-05]. ISSN 2045-2322. Available at: doi:10.1038/srep45607 [64] YOSHINO, Fumi, Tsukuru AMANO, Yajuan ZOU, Jian XU, Fuminori KIMURA, Yoshio FURUSHO, Tokuhiro CHANO, Takashi MURAKAMI, Li ZHAO and Naoki KOMATSU. Preferential Tumor Accumulation of Polyglycerol Functionalized Nanodiamond Conjugated with Cyanine Dye Leading to Near-Infrared Fluorescence In Vivo Tumor Imaging. Small (Weinheim an der Bergstrasse, Germany) [online]. 2019, 15(48) [accessed. 2024-02-05]. ISSN 1613-6829. Available at: doi:10.1002/SMLL.201901930 [65] ZHANG, Kuikui, Qi ZHAO, Shirong QIN, Yang FU, Runze LIU, Jinfang ZHI and Chongxin SHAN. Nanodiamonds conjugated upconversion nanoparticles for bio-imaging and drug delivery. Journal of Colloid and Interface Science [online]. 2019, 537, 316–324 [accessed. 2024-02-05]. ISSN 0021-9797. Available at: doi:10.1016/J.JCIS.2018.11.028 [66] WEI, Shiguo, Lin LI, Xiangbin DU and Yingqi LI. OFF–ON nanodiamond drug platform for targeted cancer imaging and therapy. Journal of Materials Chemistry B [online]. 2019, 7(21), 3390–3402. ISSN 2050-750X. Available at: doi:10.1039/C9TB00447E [67] MOCHALIN, Vadym N., Olga SHENDEROVA, Dean HO and Yury GOGOTSI. The properties and applications of nanodiamonds. Nature Nanotechnology [online]. 2012, 7(1), 11–23. ISSN 1748-3387. Available at: doi:10.1038/nnano.2011.209 [68] NEUMANN, P., I. JAKOBI, F. DOLDE, C. BURK, R. REUTER, G. WALDHERR, J. HONERT, T. WOLF, A. BRUNNER, J. H. SHIM, D. SUTER, H. SUMIYA, J. ISOYA and J. WRACHTRUP. High-precision nanoscale temperature sensing using single defects in diamond. Nano Letters [online]. 2013. ISSN 15306984. Available at: doi:10.1021/nl401216y [69] CHOE, Sunuk, Jungbae YOON, Myeongwon LEE, Jooeon OH, Dongkwon LEE, Heeseong KANG, Chul-Ho LEE and Donghun LEE. Precise temperature sensing with nanoscale thermal sensors based on diamond NV centers. Current Applied Physics [online]. 2018, 18(9), 1066–1070. ISSN 15671739. Available at: doi:10.1016/j.cap.2018.06.002 [70] PETRINI, Giulia, Giulia TOMAGRA, Ettore BERNARDI, Ekaterina MOREVA, Paolo TRAINA, Andrea MARCANTONI, Federico PICOLLO, Klaudia KVAKOVÁ, Petr CÍGLER, Ivo Pietro DEGIOVANNI, Valentina CARABELLI and Marco GENOVESE. Nanodiamond–Quantum Sensors Reveal Temperature Variation Associated to Hippocampal Neurons Firing. Advanced Science [online]. 2022, 9(28), 2202014 [accessed. 2024-02-05]. ISSN 2198-3844. Available at: doi:10.1002/ADVS.202202014 [71] CLAVEAU, Sandra, Jean Rémi BERTRAND and François TREUSSART. Fluorescent nanodiamond applications for cellular process sensing and cell tracking [online]. 2018. ISSN 2072666X. Available at: doi:10.3390/mi9050247 [72] WIRTITSCH, D., G. WACHTER, S. REISENBAUER, M. GULKA, V. IVÁDY, F. JELEZKO, A. GALI, M. NESLADEK and M. TRUPKE. Exploiting ionization dynamics in the nitrogen vacancy center for rapid, high-contrast spin, and charge state initialization. Physical Review Research [online]. 2023, 5(1), 013014 [accessed. 2023-02-22]. ISSN 26431564. Available at: doi:10.1103/PhysRevResearch.5.013014 [73] STRIEBEL, Florian Tobias. Engineering of Diamond for integrated Quantum Optics and Magnetometry. B.m., 2012. Ulm University. [74] WANG, Pengfei, Zhenheng YUAN, Pu HUANG, Xing RONG, Mengqi WANG, Xiangkun XU, Changkui DUAN, Chenyong JU, Fazhan SHI and Jiangfeng DU. High-resolution vector microwave magnetometry based on solid-state spins in diamond. Nature Communications [online]. 2015. ISSN 20411723. Available at: doi:10.1038/ncomms7631 [75] SINGAM, Shashi K.R., Jaroslaw MOTYLEWSKI, Antonina MONACO, Elena GJORGIEVSKA, Emilie BOURGEOIS, Milos NESLÁDEK, Michele GIUGLIANO and Etienne GOOVAERTS. Contrast Induced by a Static Magnetic Field for Improved Detection in Nanodiamond Fluorescence Microscopy. Physical Review Applied [online]. 2016. ISSN 23317019. Available at: doi:10.1103/PhysRevApplied.6.064013 [76] SIYUSHEV, Petr, Milos NESLADEK, Emilie BOURGEOIS, Michal GULKA, Jaroslav HRUBY, Takashi YAMAMOTO, Michael TRUPKE, Tokuyuki TERAJI, Junichi ISOYA and Fedor JELEZKO. Photoelectrical imaging and coherent spin-state readout of single nitrogen-vacancy centers in diamond. Science [online]. 2019, 363(6428), 728–731 [accessed. 2019-11-19]. ISSN 10959203. Available at: https://www.science.org/doi/10.1126/science.aav2789 [77] BOURGEOIS, Emilie, Michal GULKA and Milos NESLADEK. Photoelectric Detection and Quantum Readout of Nitrogen-Vacancy Center Spin States in Diamond. Advanced Optical Materials [online]. 2020, 8(12), 1902132 [accessed. 2022-09-15]. ISSN 2195-1071. Available at: doi:10.1002/ADOM.201902132 [78] BOURGEOIS, E., E. LONDERO, K. BUCZAK, J. HRUBY, M. GULKA, Y. BALASUBRAMANIAM, G. WACHTER, J. STURSA, K. DOBES, F. AUMAYR, M. TRUPKE, A. GALI and M. NESLADEK. Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation. Physical Review B [online]. 2017, 95(4), 041402 [accessed. 2022-09-16]. ISSN 24699969. Available at: doi:10.1103/PhysRevB.95.041402 [79] HRUBY, Jaroslav, Michal GULKA, Massimo MONGILLO, Iuliana P. RADU, Michael V. PETROV, Emilie BOURGEOIS and Milos NESLADEK. Magnetic field sensitivity of the photoelectrically read nitrogen-vacancy centers in diamond. Applied Physics Letters [online]. 2022, 120(16), 162402 [accessed. 2022-09-15]. ISSN 0003-6951. Available at: doi:10.1063/5.0079667 [80] JONES, R., J. P. GOSS and P. R. BRIDDON. Acceptor level of nitrogen in diamond and the 270-nm absorption band. Physical Review B [online]. 2009, 80(3), 033205 [accessed. 2023-05-08]. ISSN 1098-0121. Available at: doi:10.1103/PhysRevB.80.033205 [81] DEÁK, Peter, Bálint ARADI, Moloud KAVIANI, Thomas FRAUENHEIM and Adam GALI. Publisher’s note: Formation of NV centers in diamond: A theoretical study based on calculated transitions and migration of nitrogen and vacancy related defects [Phys. Rev. B 89, 075203 (2014)]. Physical Review B - Condensed Matter and Materials Physics [online]. 2014, 89(7), 075203. ISSN 10980121. Available at: doi:10.1103/PhysRevB.89.079905 [82] BOURGEOIS, Emilie, Josef SOUCEK, Jaroslav HRUBY, Michal GULKA and Milos NESLADEK. Photoelectric Detection of Nitrogen-Vacancy Centers Magnetic Resonances in Diamond: Role of Charge Exchanges with Other Optoelectrically Active Defects. Advanced Quantum Technologies [online]. 2022, 5(5), 2100153 [accessed. 2022-09-16]. ISSN 25119044. Available at: doi:10.1002/qute.202100153 [83] BOURGEOIS, Emilie, Michal GULKA and Milos NESLADEK. Photoelectric Detection and Quantum Readout of Nitrogen-Vacancy Center Spin States in Diamond. Advanced Optical Materials [online]. 2020, 8(12), 1902132. ISSN 2195-1071. Available at: doi:10.1002/ADOM.201902132 [84] RYVKIN, Solomon Meerovich. Photoelectric effects in semiconductors. B.m.: Consultants Bureau, 1969. ISBN 9781468415599. [85] HOSEA, M. E. and L. F. SHAMPINE. Analysis and implementation of TR-BDF2. Applied Numerical Mathematics [online]. 1996, 20(1–2), 21–37. ISSN 01689274. Available at: doi:10.1016/0168-9274(95)00115-8 [86] MULTIPHYSICS, COMSOL. Introduction to COMSOL multiphysics®. COMSOL Multiphysics, Burlington, MA, accessed Feb. 1998, 9, 2018. [87] LIN, Web-Chieh and Gary FEDDER. A Comparison of Induction-Detection NMR and Force Detection NMR on Micro-NMR Device Desigh. 2001. [88] BUCHER, Dominik B., Diana P. L. AUDE CRAIK, Mikael P. BACKLUND, Matthew J. TURNER, Oren BEN DOR, David R. GLENN and Ronald L. WALSWORTH. Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy. Nature Protocols [online]. 2019, 14(9), 2707–2747. ISSN 1754-2189. Available at: doi:10.1038/s41596-019-0201-3 [89] SAID, Tarek and Vasundara V. VARADAN. Variation of Cole-Cole model parameters with the complex permittivity of biological tissues. In: 2009 IEEE MTT-S International Microwave Symposium Digest [online]. B.m.: IEEE, 2009, p. 1445–1448. ISBN 978-1-4244-2803-8. Available at: doi:10.1109/MWSYM.2009.5165979 [90] ZAGHBOUNI, Sarra, Alevtina SHMAKOVA, Josef SOUCEK, Petr CIGLER, Christel FAES, Milos NESLADEK and Bert BRONE. Temperature dependent dynamics of spontaneous and trauma-induced axon plasticity [manuscript in progress]. no date. [91] ROBLEDO, Lucio, Hannes BERNIEN, Toeno Van Der SAR and Ronald HANSON. Spin dynamics in the optical cycle of single nitrogen-vacancy centres in diamond. New Journal of Physics [online]. 2011, 13(2), 025013 [accessed. 2023-06-19]. ISSN 1367-2630. Available at: doi:10.1088/1367-2630/13/2/025013 [92] BOURGEOIS, E., A. JARMOLA, P. SIYUSHEV, M. GULKA, J. HRUBY, F. JELEZKO, D. BUDKER and M. NESLADEK. Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond. Nature Communications [online]. 2015, 6(1), 1–8 [accessed. 2022-09-15]. ISSN 20411723. Available at: doi:10.1038/ncomms9577 [93] TETIENNE, J. P., L. RONDIN, P. SPINICELLI, M. CHIPAUX, T. DEBUISSCHERT, J. F. ROCH and V. JACQUES. Magnetic-field-dependent photodynamics of single NV defects in diamond: Application to qualitative all-optical magnetic imaging. New Journal of Physics [online]. 2012, 14 [accessed. 2022-09-23]. ISSN 13672630. Available at: doi:10.48550/arxiv.1206.1201 [94] MUROOKA, T., M. SHIIGAI, Y. HIRONAKA, T. TSUJI, B. YANG, T. M. HOANG, K. SUDA, K. MIZUNO, H. KATO, T. MAKINO, M. OGURA, S. YAMASAKI, M. HATANO and T. IWASAKI. Photoelectrical detection of nitrogen-vacancy centers by utilizing diamond lateral p–i–n diodes. Applied Physics Letters [online]. 2021, 118(25), 253502 [accessed. 2022-09-15]. ISSN 0003-6951. Available at: doi:10.1063/5.0055852 [95] MALINAUSKAS, T., K. JARAŠIŪNAS, E. IVAKIN, N. TRANCHANT and M. NESLADEK. Determination of carrier diffusion coefficient and lifetime in single crystalline CVD diamonds by light-induced transient grating technique. physica status solidi (a) [online]. 2010, 207(9), 2058–2063 [accessed. 2024-01-25]. ISSN 1862-6319. Available at: doi:10.1002/PSSA.201000100 [96] RADKO, Ilya P., Mads BOLL, Niels M. ISRAELSEN, Nicole RAATZ, Jan MEIJER, Fedor JELEZKO, Ulrik L. ANDERSEN and Alexander HUCK. Determining the internal quantum efficiency of shallow-implanted nitrogen-vacancy defects in bulk diamond. Optics Express [online]. 2016, 24(24), 27715 [accessed. 2022-09-16]. ISSN 10944087. Available at: doi:10.1364/OE.24.027715 [97] HALL, L. T., P. KEHAYIAS, D. A. SIMPSON, A. JARMOLA, A. STACEY, D. BUDKER and L. C. L. HOLLENBERG. Detection of nanoscale electron spin resonance spectra demonstrated using nitrogen-vacancy centre probes in diamond. Nature Communications [online]. 2016, 7(1), 10211. ISSN 2041-1723. Available at: doi:10.1038/ncomms10211 [98] ANISHCHIK, S. V., V. G. VINS and K. L. IVANOV. Level-crossing spectroscopy of nitrogen-vacancy centers in diamond: sensitive detection of paramagnetic defect centers. 2016. [99] SMITS, Janis, Joshua T. DAMRON, Pauli KEHAYIAS, Andrew F. MCDOWELL, Nazanin MOSAVIAN, Ilja FESCENKO, Nathaniel RISTOFF, Abdelghani LARAOUI, Andrey JARMOLA and Victor M. ACOSTA. Two-dimensional nuclear magnetic resonance spectroscopy with a microfluidic diamond quantum sensor. Science Advances [online]. 2019, 5(7). ISSN 2375-2548. Available at: doi:10.1126/sciadv.aaw7895 [100] GRANDINETTI, Philip J., Jason T. ASH and Nicole M. TREASE. Symmetry pathways in solid-state NMR. Progress in Nuclear Magnetic Resonance Spectroscopy [online]. 2011, 59(2), 121–196. ISSN 00796565. Available at: doi:10.1016/j.pnmrs.2010.11.003 [101] MEIRZADA, I., Y. HOVAV, S. A. WOLF and N. BAR-GILL. Negative charge enhancement of near-surface nitrogen vacancy centers by multicolor excitation. Physical Review B [online]. 2018. ISSN 24699969. Available at: doi:10.1103/PhysRevB.98.245411-
local.type.refereedRefereed-
local.type.specifiedPhd thesis-
local.type.programmeH2020-
local.relation.h2020101080136-
local.provider.typePdf-
local.uhasselt.internationalno-
item.fullcitationSOUCEK, Josef (2024) Magnetic field imaging in biological systems with nanometric resolution.-
item.accessRightsEmbargoed Access-
item.fulltextWith Fulltext-
item.contributorSOUCEK, Josef-
item.embargoEndDate2029-07-19-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
SOUCEK_disertationV4pff_BEv02.pdf
  Until 2029-07-19
Published version4.25 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.