Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/4348
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | COLPAERT, Jan | - |
dc.contributor.author | VAN TICHELEN, Katia | - |
dc.contributor.author | van Assche, J.A. | - |
dc.contributor.author | van Laere, A. | - |
dc.date.accessioned | 2007-12-20T15:48:35Z | - |
dc.date.available | 2007-12-20T15:48:35Z | - |
dc.date.issued | 1999 | - |
dc.identifier.citation | New phytologist, 143. p. 589-597 | - |
dc.identifier.issn | 0028-646X | - |
dc.identifier.uri | http://hdl.handle.net/1942/4348 | - |
dc.description.abstract | Short-term phosphate uptake rates were measured on intact ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings using a new, non-destructive method. Uptake was quantified in semihydroponics from the depletion of P-i in a nutrient solution percolating through plant containers. Plants were grown for 1 or 2 months after inoculation at a low relative nutrient addition rate of 3% d(-1) and under P limitation. Four ectomycorrhizal fungi were studied: Paxillus involutus, Suillus luteus, Suillus bovinus and Thelephora terrestris. The P-i-uptake capacity of mycorrhizal plants increased sharply in the month after inoculation. The increase was dependent on the development of the mycobionts. A positive correlation was found between the P-i-uptake rates of the seedlings and the active fungal biomass in the substrate as measured by the ergosterol assay. The highest P-i-uptake rates were found in seedlings associated with fungi producing abundant external mycelia. At an external P-i concentration of 10 mu M, mycorrhizal seedlings reached uptake rates that were 2.5 (T. terrestris) to 8.7 (P. involutus) times higher than those of non-mycorrhizal plants. The increased uptake rates did not result in an increased transfer of nutrients to the plant tissues. Nutrient depletion was ultimately similar between mycorrhizal and non-mycorrhizal plants in the semihydroponic system. Net P-i absorption followed Michaelis-Menten kinetics: uptake rates declined with decreasing P-i concentrations in the nutrient solution. This reduction was most pronounced in nonmycorrhizal seedlings and plants colonized by T. terrestris. The results confirm that there is considerable heterogeneity in affinity for P-i uptake among the different mycobionts. It is concluded that the external mycelia of ectomycorrhizal fungi strongly influence the P-i-uptake capacity of the pine seedlings, and that some mycobionts are well equipped to compete with other soil microorganisms for P-i present at low concentrations in soil solution. | - |
dc.language.iso | en | - |
dc.publisher | CAMBRIDGE UNIV PRESS | - |
dc.subject.other | BASIDIOMYCETE PISOLITHUS-TINCTORIUS; PICEA-ABIES SEEDLINGS; WILLOW ECTOMYCORRHIZAS; PAXILLUS-INVOLUTUS; NONMYCORRHIZAL; PHOSPHATE; NITROGEN; PLANTS; KINETICS; GROWTH; ectomycorrhiza; external mycelium; short-term phosphate uptake; Pinus sylvestris (Scots pine); Paxillus involutus; Suillus bovinus; Suillus luteus; Thelephora terrestris | - |
dc.title | Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings. | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 597 | - |
dc.identifier.spage | 589 | - |
dc.identifier.volume | 143 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.bibliographicCitation.oldjcat | A1 | - |
dc.identifier.doi | 10.1046/j.1469-8137.1999.00471.x | - |
dc.identifier.isi | 000083222100014 | - |
item.fulltext | No Fulltext | - |
item.fullcitation | COLPAERT, Jan; VAN TICHELEN, Katia; van Assche, J.A. & van Laere, A. (1999) Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings.. In: New phytologist, 143. p. 589-597. | - |
item.contributor | COLPAERT, Jan | - |
item.contributor | VAN TICHELEN, Katia | - |
item.contributor | van Assche, J.A. | - |
item.contributor | van Laere, A. | - |
item.accessRights | Closed Access | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.