Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/43568
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDILISSEN, Stijn-
dc.contributor.authorSILVA, Pedro-
dc.contributor.authorSMOLENTSEVA, Anastasiia-
dc.contributor.authorKACHE, Tom-
dc.contributor.authorTHOELEN, Ronald-
dc.contributor.authorHENDRIX, Jelle-
dc.date.accessioned2024-08-19T09:08:35Z-
dc.date.available2024-08-19T09:08:35Z-
dc.date.issued2024-
dc.date.submitted2024-08-19T08:31:57Z-
dc.identifier.citationBiochimica et biophysica acta. G, General subjects (Print), 1868 (9) (Art N° 130673)-
dc.identifier.urihttp://hdl.handle.net/1942/43568-
dc.description.abstractBackground: Biomolecular condensation via liquid-liquid phase separation (LLPS) is crucial for orchestrating cellular activities temporospatially. Although the rheological heterogeneity of biocondensates and the structural dynamics of their constituents carry critical functional information, methods to quantitatively study biocondensates are lacking. Single-molecule fluorescence research can offer insights into biocondensation mechanisms. Unfortunately, as dense condensates tend to sink inside their dilute aqueous surroundings, studying their properties via methods relying on Brownian diffusion may fail. Methods: We take a first step towards single-molecule research on condensates of Tau protein under flow in a microfluidic channel of an in-house developed microfluidic chip. Fluorescence correlation spectroscopy (FCS), a well-known technique to collect molecular characteristics within a sample, was employed with a newly commercialised technology, where FCS is performed on an array detector (AD-FCS), providing detailed diffusion and flow information. Results: The AD-FCS technology allowed characterising our microfluidic chip, revealing 3D flow profiles. Subsequently, AD-FCS allowed mapping the flow of Tau condensates while measuring their burst durations through the stationary laser. Lastly, AD-FCS allowed obtaining flow velocity and burst duration data, the latter of which was used to estimate the condensate size distribution within LLPS samples. Conclusion: Studying biocondensates under flow through AD-FCS is promising for single-molecule experiments. In addition, AD-FCS shows its ability to estimate the size distribution in condensate samples in a convenient manner, prompting a new way of investigating biocondensate phase diagrams. General significance: We show that AD-FCS is a valuable tool for advancing research on understanding and characterising LLPS properties of biocondensates.-
dc.description.sponsorshipFunding J. Hendrix acknowledges the Research Foundation Flanders (FWO, G0B9922N, I000123N, I001222N). S. Dilissen is grateful for his SB PhD fellow at Research Foundation – Flanders FWO (doctoraatsbursaal van het Fonds Wetenschappelijk Onderzoek –Vlaanderen) (1SE5824N) and Hasselt University (BOF20KP14). P. Silva is grateful for a doctoral scholarship from Hasselt University (BOF20OWB16). T. Kache is grateful for his PhD fellowship fundamental research at Research Foundation – Flanders FWO (doctoraatsbursaal van het Fonds Wetenschappelijk Onderzoek –Vlaanderen) (11N4722N) Acknowledgements We acknowledge the Advanced Optical Microscopy Centre at Hasselt University for support with the microscopy experiments. We thank the Dynamics Profiler team at ZEISS, for support with hardware and software needed for reliable AD-FCS measurements.-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.subject.otherMicrofluidics-
dc.subject.otherLiquid-liquid phase separation-
dc.subject.otherFluorescence correlation spectroscopy-
dc.subject.otherTau-
dc.subject.otherSingle-molecule research-
dc.titleCharacterisation of biocondensate microfluidic flow using array-detector FCS-
dc.typeJournal Contribution-
dc.identifier.issue9-
dc.identifier.volume1868-
local.format.pages13-
local.bibliographicCitation.jcatA1-
dc.description.notesHendrix, J (corresponding author), UHasselt, Biomed Res Inst, Adv Opt Microscopy Ctr, Dynam Bioimaging Lab, B-3590 Diepenbeek, Belgium.-
dc.description.notesjelle.hendrix@uhasselt.be-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr130673-
dc.identifier.doi10.1016/j.bbagen.2024.130673-
dc.identifier.pmid39029539-
dc.identifier.isi001274591900001-
local.provider.typewosris-
local.description.affiliation[Dilissen, Stijn; Silva, Pedro L.; Smolentseva, Anastasia; Kache, Tom; Hendrix, Jelle] UHasselt, Biomed Res Inst, Adv Opt Microscopy Ctr, Dynam Bioimaging Lab, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Dilissen, Stijn; Thoelen, Ronald] UHasselt, Inst Mat Res IMO IMOMEC, Biomed Device Engn Grp, Wetenschaps Pk 1, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Thoelen, Ronald] IMEC vzw, IMOMEC Div, Wetenschaps Pk 1, B-3590 Diepenbeek, Belgium.-
local.uhasselt.internationalno-
item.contributorDILISSEN, Stijn-
item.contributorSILVA, Pedro-
item.contributorSMOLENTSEVA, Anastasiia-
item.contributorKACHE, Tom-
item.contributorTHOELEN, Ronald-
item.contributorHENDRIX, Jelle-
item.fullcitationDILISSEN, Stijn; SILVA, Pedro; SMOLENTSEVA, Anastasiia; KACHE, Tom; THOELEN, Ronald & HENDRIX, Jelle (2024) Characterisation of biocondensate microfluidic flow using array-detector FCS. In: Biochimica et biophysica acta. G, General subjects (Print), 1868 (9) (Art N° 130673).-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn0304-4165-
crisitem.journal.eissn1872-8006-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Characterisation of biocondensate microfluidic flow using array-detector FCS.pdfPublished version4.18 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.