Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/43719
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSherratt, Katharine-
dc.contributor.authorSrivastava, Ajitesh-
dc.contributor.authorAinslie, Kylie-
dc.contributor.authorSingh, David E.-
dc.contributor.authorCublier, Aymar-
dc.contributor.authorMarinescu, Maria Cristina-
dc.contributor.authorCarretero, Jesus-
dc.contributor.authorGarcia, Alberto Cascajo-
dc.contributor.authorFRANCO, Nicolas-
dc.contributor.authorWILLEM, Lander-
dc.contributor.authorABRAMS, Steven-
dc.contributor.authorFAES, Christel-
dc.contributor.authorBeutels, Philippe-
dc.contributor.authorHENS, Niel-
dc.contributor.authorMueller, Sebastian-
dc.contributor.authorCharlton, Billy-
dc.contributor.authorEwert, Ricardo-
dc.contributor.authorPaltra, Sydney-
dc.contributor.authorRakow, Christian-
dc.contributor.authorRehmann, Jakob-
dc.contributor.authorConrad, Tim-
dc.contributor.authorSchutte, Christof-
dc.contributor.authorNagel, Kai-
dc.contributor.authorAbbott, Sam-
dc.contributor.authorGrah, Rok-
dc.contributor.authorNiehus, Rene-
dc.contributor.authorPrasse, Bastian-
dc.contributor.authorSandmann, Frank-
dc.contributor.authorFunk, Sebastian-
dc.date.accessioned2024-09-11T11:41:04Z-
dc.date.available2024-09-11T11:41:04Z-
dc.date.issued2024-
dc.date.submitted2024-09-09T14:03:13Z-
dc.identifier.citationEpidemics (Print), 47 (Art N° 100765)-
dc.identifier.urihttp://hdl.handle.net/1942/43719-
dc.description.abstractBackground: Collaborative comparisons and combinations of epidemic models are used as policy-relevant evidence during epidemic outbreaks. In the process of collecting multiple model projections, such collaborations may gain or lose relevant information. Typically, modellers contribute a probabilistic summary at each time-step. We compared this to directly collecting simulated trajectories. We aimed to explore information on key epidemic quantities; ensemble uncertainty; and performance against data, investigating potential to continuously gain information from a single cross-sectional collection of model results. Methods: We compared projections from the European COVID-19 Scenario Modelling Hub. Five teams modelled incidence in Belgium, the Netherlands, and Spain. We compared July 2022 projections by incidence, peaks, and cumulative totals. We created a probabilistic ensemble drawn from all trajectories, and compared to ensembles from a median across each model's quantiles, or a linear opinion pool. We measured the predictive accuracy of individual trajectories against observations, using this in a weighted ensemble. We repeated this sequentially against increasing weeks of observed data. We evaluated these ensembles to reflect performance with varying observed data. Results: By collecting modelled trajectories, we showed policy-relevant epidemic characteristics. Trajectories contained a right-skewed distribution well represented by an ensemble of trajectories or a linear opinion pool, but not models' quantile intervals. Ensembles weighted by performance typically retained the range of plausible incidence over time, and in some cases narrowed this by excluding some epidemic shapes. Conclusions: We observed several information gains from collecting modelled trajectories rather than quantile distributions, including potential for continuously updated information from a single model collection. The value of information gains and losses may vary with each collaborative effort's aims, depending on the needs of projection users. Understanding the differing information potential of methods to collect model projections can support the accuracy, sustainability, and communication of collaborative infectious disease modelling efforts.-
dc.description.sponsorshipKS, SF funded by ECDC and Wellcome (210758). AS funded by National Science Foundation Award 2135784, 2223933. KA funded by Netherlands Ministry of Health, Welfare and Sport, and European Union’s Horizon 2020 research and innovation programme - project EpiPose (Grant agreement no. 101003688). DES, AC, MM, JC, ACG funded by U3CM, Instituto de Salud Carlos III, Gobierno de Espana, ˜ European Commission. NF, LW, StA, CF, PB, NH funded by European Union’s Horizon 2020 research and innovation programme (Grant no. 101003688 – EpiPose project). SM, BC, RE, SP, CR, JR, TC, CS, KN funded by Ministry of research and education (BMBF) Germany (Grants no. 031L0300D, 031L0302A). RG, RN, BP, FS funded by ECDC.-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)-
dc.subject.otherInformation-
dc.subject.otherScenarios-
dc.subject.otherUncertainty-
dc.subject.otherAggregation-
dc.subject.otherModelling-
dc.titleCharacterising information gains and losses when collecting multiple epidemic model outputs-
dc.typeJournal Contribution-
dc.identifier.volume47-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notesSherratt, K (corresponding author), London Sch Hyg & Trop Med, London, England.-
dc.description.noteskatharine.sherratt@lshtm.ac.uk-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr100765-
local.type.programmeH2020-
local.relation.h2020101003688-
dc.identifier.doi10.1016/j.epidem.2024.100765-
dc.identifier.pmid38643546-
dc.identifier.isiWOS:001287307800001-
dc.contributor.orcidSherratt, Katharine/0000-0003-2049-3423; Funk,-
dc.contributor.orcidSebastian/0000-0002-2842-3406; Abbott, Sam/0000-0001-8057-8037; Willem,-
dc.contributor.orcidLander/0000-0002-9210-1196-
local.provider.typewosris-
local.description.affiliation[Sherratt, Katharine; Abbott, Sam; Funk, Sebastian] London Sch Hyg & Trop Med, London, England.-
local.description.affiliation[Srivastava, Ajitesh] Univ Southern Calif, Los Angeles, CA USA.-
local.description.affiliation[Ainslie, Kylie] Dutch Natl Inst Publ Hlth & Environm RIVM, Bilthoven, Netherlands.-
local.description.affiliation[Ainslie, Kylie] Univ Hong Kong, Sch Publ Hlth, Hong Kong, Peoples R China.-
local.description.affiliation[Singh, David E.; Cublier, Aymar; Carretero, Jesus; Garcia, Alberto Cascajo] Univ Carlos III Madrid, Madrid, Spain.-
local.description.affiliation[Marinescu, Maria Cristina] Barcelona Supercomp Ctr, Barcelona, Spain.-
local.description.affiliation[Franco, Nicolas] Univ Namur, Namur, Belgium.-
local.description.affiliation[Willem, Lander; Abrams, Steven; Faes, Christel; Beutels, Philippe; Hens, Niel] Univ Antwerp, Antwerp, Belgium.-
local.description.affiliation[Abrams, Steven; Faes, Christel; Hens, Niel] UHasselt, Hasselt, Belgium.-
local.description.affiliation[Mueller, Sebastian; Charlton, Billy; Ewert, Ricardo; Paltra, Sydney; Rakow, Christian; Rehmann, Jakob; Nagel, Kai] Tech Univ Berlin, Berlin, Germany.-
local.description.affiliation[Conrad, Tim; Schutte, Christof] Zuse Inst Berlin ZIB, Berlin, Germany.-
local.description.affiliation[Grah, Rok; Niehus, Rene; Prasse, Bastian; Sandmann, Frank] ECDC, Stockholm, Sweden.-
local.dataset.doi10.5281/zenodo.10891377-
local.uhasselt.internationalyes-
item.contributorSherratt, Katharine-
item.contributorSrivastava, Ajitesh-
item.contributorAinslie, Kylie-
item.contributorSingh, David E.-
item.contributorCublier, Aymar-
item.contributorMarinescu, Maria Cristina-
item.contributorCarretero, Jesus-
item.contributorGarcia, Alberto Cascajo-
item.contributorFRANCO, Nicolas-
item.contributorWILLEM, Lander-
item.contributorABRAMS, Steven-
item.contributorFAES, Christel-
item.contributorBeutels, Philippe-
item.contributorHENS, Niel-
item.contributorMueller, Sebastian-
item.contributorCharlton, Billy-
item.contributorEwert, Ricardo-
item.contributorPaltra, Sydney-
item.contributorRakow, Christian-
item.contributorRehmann, Jakob-
item.contributorConrad, Tim-
item.contributorSchutte, Christof-
item.contributorNagel, Kai-
item.contributorAbbott, Sam-
item.contributorGrah, Rok-
item.contributorNiehus, Rene-
item.contributorPrasse, Bastian-
item.contributorSandmann, Frank-
item.contributorFunk, Sebastian-
item.fullcitationSherratt, Katharine; Srivastava, Ajitesh; Ainslie, Kylie; Singh, David E.; Cublier, Aymar; Marinescu, Maria Cristina; Carretero, Jesus; Garcia, Alberto Cascajo; FRANCO, Nicolas; WILLEM, Lander; ABRAMS, Steven; FAES, Christel; Beutels, Philippe; HENS, Niel; Mueller, Sebastian; Charlton, Billy; Ewert, Ricardo; Paltra, Sydney; Rakow, Christian; Rehmann, Jakob; Conrad, Tim; Schutte, Christof; Nagel, Kai; Abbott, Sam; Grah, Rok; Niehus, Rene; Prasse, Bastian; Sandmann, Frank & Funk, Sebastian (2024) Characterising information gains and losses when collecting multiple epidemic model outputs. In: Epidemics (Print), 47 (Art N° 100765).-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1755-4365-
crisitem.journal.eissn1878-0067-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Characterising information gains and losses when collecting multiple epidemic model outputs.pdfPublished version2.71 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.