Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44268
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNeilson, Kathryn M.-
dc.contributor.authorHAMTAEI, Sarallah-
dc.contributor.authorNazif, Koosha Nassiri-
dc.contributor.authorCarr, Joshua M.-
dc.contributor.authorRahimisheikh, Sepideh-
dc.contributor.authorNitta, Frederick U.-
dc.contributor.authorBRAMMERTZ, Guy-
dc.contributor.authorBlackburn, Jeffrey L.-
dc.contributor.authorHadermann, Joke-
dc.contributor.authorSaraswat, Krishna C.-
dc.contributor.authorReid, Obadiah G.-
dc.contributor.authorVERMANG, Bart-
dc.contributor.authorDaus, Alwin-
dc.contributor.authorPop, Eric-
dc.date.accessioned2024-09-17T13:06:11Z-
dc.date.available2024-09-17T13:06:11Z-
dc.date.issued2024-
dc.date.submitted2024-09-17T09:47:33Z-
dc.identifier.citationACS nano, 18 (36) , p. 24819 -24828-
dc.identifier.urihttp://hdl.handle.net/1942/44268-
dc.description.abstractSemiconducting transition metal dichalcogenides (TMDs) are promising for high-specific-power photovoltaics due to their desirable band gaps, high absorption coefficients, and ideally dangling-bond-free surfaces. Despite their potential, the majority of TMD solar cells to date are fabricated in a nonscalable fashion, with exfoliated materials, due to the lack of high-quality, large-area, multilayer TMDs. Here, we present the scalable, thickness-tunable synthesis of multilayer WSe2 films by selenizing prepatterned tungsten with either solid-source selenium at 900 degrees C or H2Se precursors at 650 degrees C. Both methods yield photovoltaic-grade, wafer-scale WSe2 films with a layered van der Waals structure and superior characteristics, including charge carrier lifetimes up to 144 ns, over 14x higher than those of any other large-area TMD films previously demonstrated. Simulations show that such carrier lifetimes correspond to similar to 22% power conversion efficiency and similar to 64 W g(-1) specific power in a packaged solar cell, or similar to 3 W g(-1) in a fully packaged solar module. The results of this study could facilitate the mass production of high-efficiency multilayer WSe2 solar cells at low cost.-
dc.description.sponsorshipK.M.N. acknowledges support from the Stanford Graduate Fellowship (SGF) and from the National Science Foundation Graduate Research Fellowship (NSF-GRFP). S.H. acknowledges financial support from the Flanders Research Foundation (FWO)�strategic basic research doctoral grant 1S31922N. K.N. acknowledges partial support from the Stanford Precourt Institute for Energy and the member companies of the SystemX Alliance at Stanford. A.D. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through the Emmy Noether Programme (506140715). Part of this work was performed at the Stanford Nano Shared Facilities (SNSF), supported by the National Science Foundation under award ECCS-2026822. Additionally, this work was authored, in part, by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract no. DE-AC36-08GO28308. Microwave conductivity measurements and analysis at NREL were funded by the Solar Photochemistry Program, Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences, U.S. DOE. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government.-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.rights2024 American Chemical Society-
dc.subject.othertransition metal dichalcogenides-
dc.subject.othersolar cells-
dc.subject.otherselenization-
dc.subject.otherphotovoltaic-
dc.subject.othercarrier lifetime-
dc.titleToward Mass Production of Transition Metal Dichalcogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2 by Tungsten Selenization-
dc.typeJournal Contribution-
dc.identifier.epage24828-
dc.identifier.issue36-
dc.identifier.spage24819-
dc.identifier.volume18-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notesPop, E (corresponding author), Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA.; Pop, E (corresponding author), Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.; Pop, E (corresponding author), Stanford Univ, Precourt Inst Energy, Stanford, CA 94305 USA.-
dc.description.notesepop@stanford.edu-
local.publisher.place1155 16TH ST, NW, WASHINGTON, DC 20036 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/acsnano.4c03590-
dc.identifier.pmid39177965-
dc.identifier.isi001298182200001-
dc.contributor.orcidPop, Eric/0000-0003-0436-8534; Nassiri Nazif,-
dc.contributor.orcidKoosha/0000-0002-3991-6484; Nitta, Frederick/0009-0006-5852-2698;-
dc.contributor.orcidHadermann, Joke/0000-0002-1756-2566; Neilson,-
dc.contributor.orcidKathryn/0000-0003-1061-2919-
local.provider.typewosris-
local.description.affiliation[Neilson, Kathryn M.; Nazif, Koosha Nassiri; Nitta, Frederick U.; Saraswat, Krishna C.; Daus, Alwin; Pop, Eric] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA.-
local.description.affiliation[Hamtaei, Sarallah; Brammertz, Guy; Vermang, Bart] Hasselt Univ, B-3500 Hasselt, Belgium.-
local.description.affiliation[Hamtaei, Sarallah; Brammertz, Guy; Vermang, Bart] Imec, B-3600 Genk, Belgium.-
local.description.affiliation[Hamtaei, Sarallah; Brammertz, Guy; Vermang, Bart] EnergyVille, B-3600 Genk, Belgium.-
local.description.affiliation[Carr, Joshua M.] Univ Colorado Boulder, Mat Sci & Engn Program, Boulder, CO 80303 USA.-
local.description.affiliation[Rahimisheikh, Sepideh; Hadermann, Joke] Univ Antwerp, Electron Microscopy Mat Sci EMAT, B-2020 Antwerp, Belgium.-
local.description.affiliation[Nitta, Frederick U.; Saraswat, Krishna C.; Pop, Eric] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.-
local.description.affiliation[Blackburn, Jeffrey L.; Reid, Obadiah G.] Natl Renewable Energy Lab, Chem & Nanosci Ctr, Golden, CO 80401 USA.-
local.description.affiliation[Reid, Obadiah G.] Univ Colorado Boulder, Renewable & Sustainable Energy Inst, Boulder, CO 80303 USA.-
local.description.affiliation[Daus, Alwin] Univ Freiburg, Dept Microsyst Engn IMTEK, Sensors Lab, D-79110 Freiburg, Germany.-
local.description.affiliation[Pop, Eric] Stanford Univ, Precourt Inst Energy, Stanford, CA 94305 USA.-
local.uhasselt.internationalyes-
item.fullcitationNeilson, Kathryn M.; HAMTAEI, Sarallah; Nazif, Koosha Nassiri; Carr, Joshua M.; Rahimisheikh, Sepideh; Nitta, Frederick U.; BRAMMERTZ, Guy; Blackburn, Jeffrey L.; Hadermann, Joke; Saraswat, Krishna C.; Reid, Obadiah G.; VERMANG, Bart; Daus, Alwin & Pop, Eric (2024) Toward Mass Production of Transition Metal Dichalcogenide Solar Cells: Scalable Growth of Photovoltaic-Grade Multilayer WSe2 by Tungsten Selenization. In: ACS nano, 18 (36) , p. 24819 -24828.-
item.fulltextWith Fulltext-
item.embargoEndDate2025-02-23-
item.contributorNeilson, Kathryn M.-
item.contributorHAMTAEI, Sarallah-
item.contributorNazif, Koosha Nassiri-
item.contributorCarr, Joshua M.-
item.contributorRahimisheikh, Sepideh-
item.contributorNitta, Frederick U.-
item.contributorBRAMMERTZ, Guy-
item.contributorBlackburn, Jeffrey L.-
item.contributorHadermann, Joke-
item.contributorSaraswat, Krishna C.-
item.contributorReid, Obadiah G.-
item.contributorVERMANG, Bart-
item.contributorDaus, Alwin-
item.contributorPop, Eric-
item.accessRightsEmbargoed Access-
crisitem.journal.issn1936-0851-
crisitem.journal.eissn1936-086X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
neilson-et-al-2024-toward.pdf
  Restricted Access
Published version5.41 MBAdobe PDFView/Open    Request a copy
Jul24_main_SelenizationofWSe2_ACSNano.pdf
  Until 2025-02-23
Peer-reviewed author version1.49 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.