Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/442
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMOLENBERGHS, Geert-
dc.contributor.authorKenward, Michael-
dc.date.accessioned2004-10-29T14:52:11Z-
dc.date.available2004-10-29T14:52:11Z-
dc.date.issued1997-
dc.identifier.citationGregoire, T., Brillinger, D.R., Diggle, P.J., Rusek-Cohen, E., Warren, W.G. & Wolfinger, R.D. (Ed.) Lecture Notes in Statistics 122, Proceedings of the Nantucket conference on Modelling Longitudinal and Spatially Correlated Data: Methods, Applications and Future Directions, New York : Springer-Verlag, p. 331-337-
dc.identifier.isbn9780387982168-
dc.identifier.issn0930-0325-
dc.identifier.urihttp://hdl.handle.net/1942/442-
dc.description.abstractIt is commonly assumed that likelihood based inferences are valid when data are missing at random. In his original work on this topic, Rubin defined precisely the extent to which this statement holds. In particular, the observed but not the expected information matrix can be used for frequentist inference. In the rapidly growing literature on this subject, this fact is not always appreciated. An illustration is given, in the setting of the log-linear model for correlated binary data-
dc.language.isoen-
dc.publisherNew York : Springer-Verlag-
dc.rights© Springer Science+Business Media New York 1997-
dc.subjectMathematical Statistics-
dc.subjectLongitudinal data-
dc.subjectMissing data-
dc.subject.otherdropouts; expected information; likelihood function; missing values; observed information-
dc.titleCalculating the appropriate information matrix for log-linear models when data are missing at random-
dc.typeProceedings Paper-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.bibliographicCitation.oldjcat-
dc.identifier.doidoi.org/10.1007/978-1-4612-0699-6_29-
item.accessRightsClosed Access-
item.fullcitationMOLENBERGHS, Geert & Kenward, Michael (1997) Calculating the appropriate information matrix for log-linear models when data are missing at random. In: Gregoire, T., Brillinger, D.R., Diggle, P.J., Rusek-Cohen, E., Warren, W.G. & Wolfinger, R.D. (Ed.) Lecture Notes in Statistics 122, Proceedings of the Nantucket conference on Modelling Longitudinal and Spatially Correlated Data: Methods, Applications and Future Directions, New York : Springer-Verlag, p. 331-337.-
item.fulltextNo Fulltext-
item.contributorMOLENBERGHS, Geert-
item.contributorKenward, Michael-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.