Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/442
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | Kenward, Michael | - |
dc.date.accessioned | 2004-10-29T14:52:11Z | - |
dc.date.available | 2004-10-29T14:52:11Z | - |
dc.date.issued | 1997 | - |
dc.identifier.citation | Gregoire, T., Brillinger, D.R., Diggle, P.J., Rusek-Cohen, E., Warren, W.G. & Wolfinger, R.D. (Ed.) Lecture Notes in Statistics 122, Proceedings of the Nantucket conference on Modelling Longitudinal and Spatially Correlated Data: Methods, Applications and Future Directions, New York : Springer-Verlag, p. 331-337 | - |
dc.identifier.isbn | 9780387982168 | - |
dc.identifier.issn | 0930-0325 | - |
dc.identifier.uri | http://hdl.handle.net/1942/442 | - |
dc.description.abstract | It is commonly assumed that likelihood based inferences are valid when data are missing at random. In his original work on this topic, Rubin defined precisely the extent to which this statement holds. In particular, the observed but not the expected information matrix can be used for frequentist inference. In the rapidly growing literature on this subject, this fact is not always appreciated. An illustration is given, in the setting of the log-linear model for correlated binary data | - |
dc.language.iso | en | - |
dc.publisher | New York : Springer-Verlag | - |
dc.rights | © Springer Science+Business Media New York 1997 | - |
dc.subject | Mathematical Statistics | - |
dc.subject | Longitudinal data | - |
dc.subject | Missing data | - |
dc.subject.other | dropouts; expected information; likelihood function; missing values; observed information | - |
dc.title | Calculating the appropriate information matrix for log-linear models when data are missing at random | - |
dc.type | Proceedings Paper | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
dc.bibliographicCitation.oldjcat | - | |
dc.identifier.doi | doi.org/10.1007/978-1-4612-0699-6_29 | - |
item.accessRights | Closed Access | - |
item.fullcitation | MOLENBERGHS, Geert & Kenward, Michael (1997) Calculating the appropriate information matrix for log-linear models when data are missing at random. In: Gregoire, T., Brillinger, D.R., Diggle, P.J., Rusek-Cohen, E., Warren, W.G. & Wolfinger, R.D. (Ed.) Lecture Notes in Statistics 122, Proceedings of the Nantucket conference on Modelling Longitudinal and Spatially Correlated Data: Methods, Applications and Future Directions, New York : Springer-Verlag, p. 331-337. | - |
item.fulltext | No Fulltext | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | Kenward, Michael | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.