Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44308
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCleuren, Bart-
dc.contributor.authorWIJNS, Bart-
dc.date.accessioned2024-09-25T07:35:03Z-
dc.date.available2024-09-25T07:35:03Z-
dc.date.issued2024-
dc.date.submitted2024-09-24T09:49:06Z-
dc.identifier.urihttp://hdl.handle.net/1942/44308-
dc.description.abstractThis thesis studies transport properties of microscopic systems in a stochastic framework. Abstractly, transport arises in any system whenever it is brought out of equilibrium as a result of the system’s natural tendency to move back towards said equilibrium. The main focus of this thesis is on transport properties when the driving force which causes the non-equilibrium conditions is time-dependent. We will build on previous work done on the linearized stochastic thermodynamics of periodically driven systems to arrive at a stochastic impedance which exactly characterizes the properties of the resulting time-dependent probability currents. We will start this thesis with a brief introduction about the framework of stochastic thermodynamics and the previous work that allows us to formulate the stochastic impedance framework immediately afterwards. In the following chapters, the concept of stochastic impedance is explored through examples and potential applications. Example systems include analytical solutions, as well as numerical solutions where analytical calculations are not feasible. The analytical solutions cover some small systems and some arbitrarily large systems where parameters are chosen such that the expressions simplify enough to be solvable. Numerical solutions are only limited by available computing power and can explore more complicated systems. Potential applications come from attempting to measure the stochastic impedance as a response function of some applied driving frequency. It is shown that such measurements have the potential to detect hidden states or transitions in the system of interest. In the last part of the thesis, an excursion is made into a time-independent world where a translational analogue of the classical Brownian gyrator, dubbed the Brownian translator, is discussed. It consists of an asymmetric object embedded in a nonequilibrium gas, characterized by the velocity distribution being almost Maxwellian but with different effective temperatures for each velocity component. It is shown that this results in the object gaining an average velocity, permitting a heat flow between the two components.-
dc.language.isoen-
dc.titleStochastic Transport: Impedance and a Brownian Translator-
dc.typeTheses and Dissertations-
local.bibliographicCitation.jcatT1-
dc.relation.references[1] N.G. Van Kampen. Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam, 3rd edition, 2007. [2] C. Liu, K. Huang, P. Won-Taue, M. Li, T. Yang, X. Liu, L. Liang, T. Minari, and Y. Noh. A unified understanding of charge transport in organic semiconductors: the importance of attenuated delocalization for the carriers. Mater. Horiz., 4: 608–618, 2017. doi: 10.1039/C7MH00091J. [3] J. Lee. Physical modeling of charge transport in conjugated polymer field-effect transistors. J. Phys. D, 54, 2020. doi: 10.1088/1361-6463/abd271. [4] J. Lehman, G.L. Ingold, and P. H¨anggi. Incoherent charge transport through molecular wires: interplay of coulomb interaction and wire population. Chem. Phys., 281(2–3):199–209, August 2002. doi: 10.1016/s0301-0104(02)00344-0. [5] S. Pirbadian and M. Y. El-Naggar. Multistep hopping and extracellular charge transfer in microbial redox chains. Phys. Chem. Chem. Phys., 14:13802–13808, 2012. doi: 10.1039/C2CP41185G. [6] N. F. Polizzi, S. S. Skourtis, and D. N. Beratan. Physical constraints on charge transport through bacterial nanowires. Faraday Discuss., 155:43–61, 2012. doi: 10.1039/C1FD00098E. [7] R. C. Creasey, A. B. Mostert, T. A. Nguyen, B. Virdis, S. Freguia, and B. Laycock. Microbial nanowires - Electron transport and the role of synthetic analogues. Acta Biomat., 69:1, 2018. doi: 10.1016/j.actbio.2018.01.007. [8] Y. Eshel, U. Peskin, and N. Amdursky. Coherence-assisted electron diffusion across the multi-heme protein-based bacterial nanowire. Nanotechnology, 31, 2020. doi: 10.1088/1361-6528/ab8767. [9] P. J. Dahl, S. M. Yi, Y. Gu, A. Acharya, C. Shipps, J. Neu, J. P. O’Brien, U. N. Morzan, S. Chaudhuri, M. J. Guberman-Pfeffer, D. Vu, S. E. Yalcin, V.S. Batista, and N. S. Malvankar. A 300-fold conductivity increase in microbial cytochrome nanowires due to temperature-induced restructuring of hydrogen bonding networks. Science Advances, 8, 2022. doi: 10.1126/sciadv.abm7193. [10] L. P. Nielsen, N. Risgaard-Petersen, H. Fossing, P. B. Christensen, and M. Sayama. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature, 463(7284):1071, 2010. doi: 10.1038/nature08790. [11] F. J. R. Meysman, N. Risgaard-Petersen, S. Y. Malkin, and L. P. Nielsen. The geochemical fingerprint of microbial long-distance electron transport in the seafloor. Geochim. Cosmochim. Acta, 152:122, 2015. doi: 10.1016/j.gca.2014.12.014. [12] F. J. R. Meysman. Cable bacteria take a new breath using long-distance electricity. Trends in Microbiology, 26:411, 2017. doi: 10.1016/j.tim.2017.10.011. [13] C. Pfeffer, S. Larsen, J. Song, M. Dong, F. Besenbacher, R. L. Meyer, K. U. Kjeldsen, L. Schreiber, Y. A. Gorby, M. Y. El-Naggar, K.M. Leung, A. Schramm, N. Risgaard-Petersen, and L.P. Nielsen. Filamentous bacteria transport electrons over centimetre distances. Nature, 491(7423):218, 2012. doi: 10.1038/nature11586. [14] M. J. Edwards, G. F. White, J. N. Butt, D. J. Richardson, and T. A. Clarke. The crystal structure of a biological insulated transmembrane molecular wire. Cell, 181(3):665–673.e10, 2020. doi: https://doi.org/10.1016/j.cell.2020.03.032. [15] J.R. van der Veen, S. Valianti, H. S. H. van der Zant, Y. Blanter, and F. J. R. Meysman. A model analysis of centimeter-long electron transport in cable bacteria. Phys. Chem. Chem. Phys., 26:3139–3151, 2024. doi: 10.1039/D3CP04466A. [16] X-LAB Hasselt University. Private communication. [17] L. Peliti and S. Pigolotti. Stochastic Thermodynamics: an Introduction. Princeton University Press, Princeton, 2021. ISBN 978-0-521-85103-9. [18] B. Cleuren and K. Proesmans. Stochastic impedance. Physica A, page 122789, 2019. doi: 10.1016/j.physa.2019.122789. [19] J. Schnakenberg. Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Mod. Phys., 48:571–585, 1976. doi: 10.1103/RevModPhys.48.571. [20] U. Seifert. Stochastic thermodynamics: Principles and perspectives. Eur. Phys. J. B, 64:423–431, 08 2008. doi: 10.1140/epjb/e2008-00001-9. [21] U. Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys., 75(12):126001, 2012. doi: 10.1088/0034- 4885/75/12/126001. [22] C. Van den Broeck. Stochastic thermodynamics: A brief introduction. Proc. Of the International School of Physics ’Enrico Fermi’, 184, 09 2014. doi: 10.3254/978-1-61499-278-3-155. [23] R. Kutner. Susceptibility and transport coefficients in a transient state on a one-dimensional lattice i. extended linear response and diffusion. Physica A, 224 (3):558–588, 1996. doi: https://doi.org/10.1016/0378-4371(95)00334-7. [24] K. Brandner, K. Saito, and U. Seifert. Thermodynamics of micro-and nanosystems driven by periodic temperature variations. Phys. Rev. X, 5(3):031019, 2015. doi: https://doi.org/10.1103/PhysRevX.5.031019. [25] K. Proesmans and C. Van den Broeck. Onsager coefficients in periodically driven systems. Phys. Rev. Lett., 115(9):090601, 2015. doi: 10.1103/Phys- RevLett.115.090601. [26] K. Proesmans, B. Cleuren, and C. Van den Broeck. Linear stochastic thermodynamics for periodically driven systems. J. Stat. Mech.: Theor. Exp., 2016(2): 023202, 2016. doi: 10.1088/1742-5468/2016/02/023202. [27] K. Proesmans and C.E. Fiore. General linear thermodynamics for periodically driven systems with multiple reservoirs. Phys. Rev. E, 100:022141, 2019. doi: 10.1103/PhysRevE.100.022141. [28] D. Forastiere, R. Rao, and M. Esposito. Linear stochastic thermodynamics. New J. Phys., 24(8):083021, aug 2022. doi: 10.1088/1367-2630/ac836b. [29] J. Von Neumann. Various techniques used in connection with random digits. Nat. Bureau Standards, 12:36–38, 1951. [30] J. C. Dyre. The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys, 64(5):2456–2468, 09 1988. doi: 10.1063/1.341681. [31] T. Ishii. Theory of classical hopping conduction. Prog. Theor. Phys., 73(5): 1084–1097, may 1985. doi: 10.1143/PTP.73.1084. [32] M. Rosenblatt. A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. U.S.A., 42(1):43–47, 1956. doi: 10.1073/pnas.42.1.43. [33] K. W. Kehr, K. Mussawisade, T. Wichmann, and W. Dieterich. Rectification by hopping motion through nonsymmetric potentials with strong bias. Phys. Rev. E, 56:R2351–R2354, Sep 1997. doi: 10.1103/PhysRevE.56.R2351. [34] W. Yueh. Eigenvalues of several tridiagonal matrices. Appl. Math. E-Notes [electronic only], 5:66–74, 2005. URL http://eudml.org/doc/51497. [35] R. J. Karadeema, M. Stancescu, T. P. Steidl, S. C. Bertot, and D. M. Kolpashchikov. The owl sensor: a ‘fragile’ dna nanostructure for the analysis of single nucleotide variations. Nanoscale, 10:10116–10122, 2018. doi: 10.1039/C8NR01107A. [36] B. L. Mueller, M. J. Liberman, and D. M. Kolpashchikov. Owl2: a molecular beacon-based nanostructure for highly selective detection of single-nucleotide variations in folded nucleic acids. Nanoscale, 15:5735–5742, 2023. doi: 10.1039/D2NR05590B. [37] T-LAB Hasselt University. Private communication. [38] M. Stancescu, T. Molden, J. Hooyberghs, A. Balaeff, and D. M. Kolpashchikov. Non-equilibrium hybridization enables discrimination of a point mutation within 5-40oc. J. Am. Chem. Soc., 138, 09 2016. doi: 10.1021/jacs.6b05628. [39] B. Wijns, R. Eichhorn, and B. Cleuren. Microscopic model for a brownian translator. J. Stat. Mech., 2024, 2023. doi: 10.1088/1742-5468/ad3199. [40] R. Filliger and P. Reimann. Brownian Gyrator: A Minimal Heat Engine on the Nanoscale. Phys. Rev. Lett., 99(23):230602, December 2007. doi: 10.1103/Phys- RevLett.99.230602. [41] P. Reimann. Brownian motors: Noisy transport far from equilibrium. Phys. Rep., 361(2):57–265, April 2002. doi: 10.1016/S0370-1573(01)00081-3. [42] P. Reimann and P. H¨anggi. Introduction to the physics of Brownian motors. Appl. Phys. A, 75(2):169–178, August 2002. doi: 10.1007/s003390201331. [43] P. H¨anggi, F. Marchesoni, and F. Nori. Brownian motors. Ann Phys, 517(1-3): 51–70, 2005. doi: https://doi.org/10.1002/andp.200551701-304. [44] M. von Smoluchowski. Experimental proof of regular thermodynamic conflicting molecular phenomenons. Phys. Z., 13:1069, 1912. [45] R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman lectures on physics; New millennium ed. Basic Books, New York and NY, 2010. Originally published 1963-1965. [46] R. D. Astumian. Thermodynamics and Kinetics of a Brownian Motor. Science, 276(5314):917–922, May 1997. doi: 10.1126/science.276.5314.917. [47] G. Benenti, G. Casati, K. Saito, and R. S. Whitney. Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep., 694:1–124, June 2017. doi: 10.1016/j.physrep.2017.05.008. [48] J. Frank and R. L. Gonzalez. Structure and Dynamics of a Processive Brownian Motor: The Translating Ribosome. Ann. Rev. Biochem., 79(1):381–412, 2010. doi: 10.1146/annurev-biochem-060408-173330. [49] M. von Delius and D. A. Leigh. Walking molecules. Chem. Soc. Rev., 40(7): 3656–3676, June 2011. doi: 10.1039/C1CS15005G. [50] D. Chowdhury. Stochastic mechano-chemical kinetics of molecular motors: A multidisciplinary enterprise from a physicist’s perspective. Phys. Rep., 529(1): 1–197, August 2013. doi: 10.1016/j.physrep.2013.03.005. [51] D. A. Leigh, U. Lewandowska, B. Lewandowski, and M. R. Wilson. Synthetic Molecular Walkers, pages 111–138. Springer International Publishing, Cham, 2014. [52] H. Linke, T. E. Humphrey, P. E. Lindelof, A. L¨ofgren, R. Newbury, P. Omling, A.O. Sushkov, R. P. Taylor, and H. Xu. Quantum ratchets and quantum heat pumps. Appl. Phys. A, 75(2):237–246, August 2002. doi: 10.1007/s003390201335. [53] V. Blickle and C. Bechinger. Realization of a micrometre-sized stochastic heat engine. Nat. Phys., 8(2):143–146, February 2012. doi: 10.1038/nphys2163. [54] S. Krishnamurthy, S. Ghosh, D. Chatterji, R. Ganapathy, and A. K. Sood. A micrometre-sized heat engine operating between bacterial reservoirs. Nature Physics, 12(12):1134–1138, December 2016. doi: 10.1038/nphys3870. [55] L. O. G´alvez and D. van der Meer. Granular motor in the non-Brownian limit. J. Stat. Mech., 2016(4):043206, April 2016. doi: 10.1088/1742- 5468/2016/04/043206. [56] K. H. Chiang, C. L. Lee, P. Y. Lai, and Y. F. Chen. Electrical autonomous Brow- nian gyrator. Phys. Rev. E, 96(3):032123, September 2017. doi: 10.1103/Phys- RevE.96.032123. [57] A. Argun, J. Soni, L. Dabelow, S. Bo, G. Pesce, R. Eichhorn, and G. Volpe. Experimental realization of a minimal microscopic heat engine. Phys. Rev. E, 96 (5):052106, 2017. doi: 10.1103/PhysRevE.96.052106. [58] F. J. Cao, L. Dinis, and J. M. R. Parrondo. Feedback Control in a Collective Flashing Ratchet. Phys. Rev. Lett., 93(4):040603, July 2004. doi: 10.1103/Phys- RevLett.93.040603. [59] M. P. Leighton and D. A. Sivak. Dynamic and Thermodynamic Bounds for Collective Motor-Driven Transport. Phys. Rev. Lett., 129(11):118102, September 2022. doi: 10.1103/PhysRevLett.129.118102. [60] C. Van den Broeck, R. Kawai, and P. Meurs. Microscopic models of Brownian ratchets. In Noise in Complex Systems and Stochastic Dynamics, volume 5114, pages 1–8. International Society for Optics and Photonics, May 2003. doi: 10.1117/12.488564. [61] C. Van den Broeck, R. Kawai, and P. Meurs. Microscopic Analysis of a Thermal Brownian Motor. Phys. Rev. Lett., 93(9):090601, August 2004. doi: 10.1103/PhysRevLett.93.090601. [62] P. Meurs, C. Van den Broeck, and A. Garcia. Rectification of thermal fluctuations in ideal gases. Phys. Rev. E, 70(5):051109, November 2004. doi: 10.1103/Phys- RevE.70.051109. [63] C. Van den Broeck, P. Meurs, and R. Kawai. From Maxwell demon to Brownian motor. New J. Phys., 7:10–10, February 2005. doi: 10.1088/1367-2630/7/1/010. [64] P. Meurs and C. Van den Broeck. Thermal Brownian motor. J. Phys. Condens. Matter, 17(47):S3673–S3684, November 2005. doi: 10.1088/0953- 8984/17/47/002. [65] C. Van den Broeck and R. Kawai. Brownian refrigerator. Phys. Rev. Lett., 96: 210601, Jun 2006. doi: 10.1103/PhysRevLett.96.210601. [66] M. van den Broek and C. Van den Broeck. Chiral brownian heat pump. Phys. Rev. Lett., 100:130601, Mar 2008. doi: 10.1103/PhysRevLett.100.130601. [67] M. van den Broek and C. Van den Broeck. Rectifying the thermal Brownian motion of three-dimensional asymmetric objects. Phys. Rev. E, 78(1):011102, July 2008. doi: 10.1103/PhysRevE.78.011102. [68] M. van den Broek, R. Eichhorn, and C. Van den Broeck. Intrinsic ratchets. EPL, 86(3):30002, May 2009. doi: 10.1209/0295-5075/86/30002. [69] B. Cleuren and R. Eichhorn. Energetics of a microscopic Feynman ratchet. J. Stat. Mech., 2023(4):043202, apr 2023. doi: 10.1088/1742-5468/acc64e. [70] J. M. R. Parrondo and P. Espa˜nol. Criticism of Feynman’s Analysis of the Ratchet as an Engine. Am. J. Phys., 64(9):1125–1130, September 1996. doi: 10.1119/1.18393. [71] NIST Digital Library of Mathematical Functions. URL http://dlmf.nist.gov/. [72] B. Cleuren and C. Van den Broeck. Granular Brownian motor. EPL, 77(5): 50003, February 2007. doi: 10.1209/0295-5075/77/50003. [73] A. L. Garcia and W.Wagner. Generation of the Maxwellian inflow distribution. J. Comput. Phys., 217(2):693–708, September 2006. doi: 10.1016/j.jcp.2006.01.025. [74] W. H. Press. Numerical recipes 3rd edition: The art of scientific computing. Cambridge university press, 2007.-
local.type.refereedNon-Refereed-
local.type.specifiedPhd thesis-
local.provider.typePdf-
local.uhasselt.internationalno-
item.fulltextWith Fulltext-
item.accessRightsEmbargoed Access-
item.contributorWIJNS, Bart-
item.embargoEndDate2029-09-28-
item.fullcitationWIJNS, Bart (2024) Stochastic Transport: Impedance and a Brownian Translator.-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Portfolio5.pdf
  Until 2029-09-28
Published version4.02 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.