Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44319
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBogaerts, Bart-
dc.contributor.authorTen Cate, Balder-
dc.contributor.authorMclean, Brett-
dc.contributor.authorVAN DEN BUSSCHE, Jan-
dc.date.accessioned2024-09-25T10:51:11Z-
dc.date.available2024-09-25T10:51:11Z-
dc.date.issued2024-
dc.date.submitted2024-09-20T14:14:38Z-
dc.identifier.citationLogical Methods in Computer Science, 20 (3) (Art N° 20)-
dc.identifier.issn1860-5974-
dc.identifier.urihttp://hdl.handle.net/1942/44319-
dc.description.abstract. We investigate a number of semantically defined fragments of Tarski's algebra of binary relations, including the function-preserving fragment. We address the question of whether they are generated by a finite set of operations. We obtain several positive and negative results along these lines. Specifically, the homomorphism-safe fragment is finitely generated (both over finite and over arbitrary structures). The function-preserving fragment is not finitely generated (and, in fact, not expressible by any finite set of guarded secondorder definable function-preserving operations). Similarly, the total-function-preserving fragment is not finitely generated (and, in fact, not expressible by any finite set of guarded second-order definable total-function-preserving operations). In contrast, the forwardlooking function-preserving fragment is finitely generated by composition, intersection, antidomain, and preferential union. Similarly, the forward-and-backward-looking injectivefunction-preserving fragment is finitely generated by composition, intersection, antidomain, inverse, and an 'injective union' operation.-
dc.description.sponsorshipEuropean Union [MSCA-101031081]; SNSF-FWO Lead Agency [200021L-
dc.language.isoen-
dc.publisherLOGICAL METHODS COMPUTER SCIENCE E V-
dc.rightsB. Bogaerts, B. ten Cate, B. McLean, and J. Van den Bussche⃝ CC Creative Commons. This work is licensed under the Creative Commons Attribution License. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2, 10777 Berlin, Germany-
dc.titlePreservation theorems for Tarski's relation algebra-
dc.typeJournal Contribution-
dc.identifier.issue3-
dc.identifier.volume20-
local.format.pages17-
local.bibliographicCitation.jcatA1-
dc.description.notesBogaerts, B (corresponding author), Vrije Univ Brussel, Brussels, Belgium.-
dc.description.notesbart.bogaerts@vub.be; b.d.tencate@uva.nl; brett.mclean@ugent.be;-
dc.description.notesjan.vandenbussche@uhasselt.be-
local.publisher.placeKLEISTSTR 22, BRAUNSCHWEIG, 38124, GERMANY-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr20-
dc.identifier.doi10.46298/LMCS-20(3:20)2024-
dc.identifier.isi001307475400001-
dc.identifier.eissn1860-5974-
dc.identifier.eissn1860-5974-
local.provider.typewosris-
local.description.affiliation[Bogaerts, Bart] Vrije Univ Brussel, Brussels, Belgium.-
local.description.affiliation[Ten Cate, Balder] Univ Amsterdam, ILLC, Amsterdam, Netherlands.-
local.description.affiliation[Mclean, Brett] Univ Ghent, Ghent, Belgium.-
local.description.affiliation[van den Bussche, Jan] Hasselt Univ, Hasselt, Belgium.-
local.uhasselt.internationalyes-
item.contributorBogaerts, Bart-
item.contributorTen Cate, Balder-
item.contributorMclean, Brett-
item.contributorVAN DEN BUSSCHE, Jan-
item.fullcitationBogaerts, Bart; Ten Cate, Balder; Mclean, Brett & VAN DEN BUSSCHE, Jan (2024) Preservation theorems for Tarski's relation algebra. In: Logical Methods in Computer Science, 20 (3) (Art N° 20).-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
crisitem.journal.issn1860-5974-
crisitem.journal.eissn1860-5974-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
xx.pdfNon Peer-reviewed author version2.8 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.