Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44343
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKUNNEN, Kris-
dc.contributor.authorAli, Muntasir-
dc.contributor.authorLATAF, Amine-
dc.contributor.authorVan Hees, May-
dc.contributor.authorNauts, Robin-
dc.contributor.authorHOREMANS, Nele-
dc.contributor.authorVANDAMME, Dries-
dc.contributor.authorCUYPERS, Ann-
dc.date.accessioned2024-09-27T13:15:36Z-
dc.date.available2024-09-27T13:15:36Z-
dc.date.issued2024-
dc.date.submitted2024-09-05T10:51:04Z-
dc.identifier.citationFrontiers in plant science, 15-
dc.identifier.urihttp://hdl.handle.net/1942/44343-
dc.description.abstractTo reach the estimated food demands for 2050 in decreasingly suiting climates, current agricultural techniques have to be complemented by sustainably intensified practices. The current study repurposed wheat crop residues into biochar, and investigated its potential in different plant cultivation systems, including a hydroponic cultivation of wheat. Biochars resulting from varying pyrolysis parameters including feedstock composition (straw and chaff) and temperature (450°C and 600°C), were tested using a fast plant screening method. Biochar WBC450, produced from a combination of chaff and straw at 450°C, was selected for further plant experiments, and used in a static leaching experiment in the Arabidopsis thaliana cultivation medium. Increased pH and EC were observed, together with an increase of most macronutrient (K, Mg, P, S) and a decrease of most micronutrient (Fe, Mn, Zn) concentrations. Considering plant growth, application of biochar resulted in concentration-dependent effects in both tested plant species (A. thaliana and wheat). It improved the vegetative yield across all tested cultivation systems. Increases in K and S, and concentration-dependent decreases in Fe and Na content in wheatgrass were observed. Biochar influenced the reproduction of hydroponically cultivated wheat by increasing the number of spikes and the number of seeds per spike. The antioxidative capacity of wheat grass, and the seed sugar and starch contents remained unaffected by biochar application. This study contributes to innovation in soilless cultivation approaches of staple crops, within the framework of closing waste loops for a circular bioeconomy.-
dc.language.isoen-
dc.rights© 2024 Kunnen, Ali, Lataf, Van Hees, Nauts, Horemans, Vandamme and Cuypers. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.-
dc.subject.otherbiochar-
dc.subject.otherwheat-
dc.subject.otherhydroponics and soilless cultivation-
dc.subject.otherArabidopsis thaliana-
dc.subject.othercircular bioeconomy-
dc.titleFrom crop left-overs to nutrient resource: growth-stimulating potential of biochar in nutrient solutions for wheat soilless cultivation systems-
dc.typeJournal Contribution-
dc.identifier.volume15-
local.format.pages16-
local.bibliographicCitation.jcatA1-
dc.relation.referencesAl-Kodmany, K. (2018). The vertical farm: A review of developments and implications for the vertical city. Buildings 8, 24. doi: 10.3390/buildings8020024 Amery, F., Debode, J., Ommeslag, S., Visser, R., De Tender, C., and Vandecasteele, B. (2021). Biochar for circular horticulture: feedstock related effects in soilless cultivation. Agronomy-Basel 11, 629. doi: 10.3390/agronomy11040629 Arabzadeh, V., Miettinen, P., Kotilainen, T., Herranen, P., Karakoc, A., Kummu, M., et al. (2023). Urban vertical farming with a large wind power share and optimised electricity costs. Appl. Energy 331, 120416. doi: 10.1016/j.apenergy.2022.120416 Asseng, S., Guarin, J. R., Raman, M., Monje, O., Kiss, G., Despommier, D. D., et al. (2020). Wheat yield potential in controlled-environment vertical farms. Proc. Natl. Acad. Sci. United States America 117, 19131–19135. doi: 10.1073/pnas.2002655117 Awad, Y. M., Lee, S. E., Ahmed, M. B. M., Vu, N. T., Farooq, M., Kim, I. S., et al. (2017). Biochar, a potential hydroponic growth substrate, enhances the nutritional status and growth of leafy vegetables. J. Cleaner Prod. 156, 581–588. Bekchanova, M., Campion, L., Bruns, S., Kuppens, T., Lehmann, J., Jozefczak, M., et al. (2024). Biochar improves the nutrient cycle in sandy-textured soils and increases crop yield: a systematic review. Environ. Evidence 13, 3. doi: 10.1186/s13750-024- 00326-5 Blok, C., van der Salm, C., Hofland-Zijlstra, J., Streminska, M., Eveleens, B., Regelink, I., et al. (2017). Biochar for horticultural rooting media improvement: evaluation of biochar from gasification and slow pyrolysis. Agronomy-Basel 7, 6. doi: 10.3390/ agronomy7010006 Ding, X. T., Jiang, Y. P., Zhao, H., Guo, D. D., He, L. Z., Liu, F. G., et al. (2018). Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp Chinensis) in a hydroponic system. PloS One 13, e0202090. doi: 10.1371/journal.pone.0202090 Dunlop, S. J., Arbestain, M. C., Bishop, P. A., and Wargent, J. J. (2015). Closing the loop: use of biochar produced from tomato crop green waste as a substrate for soilless, hydroponic tomato production. Hortscience 50, 1572–1581. doi: 10.21273/ hortsci.50.10.1572 French, E., and Iyer-Pascuzzi, A. S. (2018). A role for the gibberellin pathway in biochar-mediated growth promotion. Sci. Rep. 8, 5389. doi: 10.1038/s41598-018- 23677-9 Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: the challenge of feeding 9 billion people. Science 327, 812– 818. doi: 10.1126/science.1185383 Gruda, N. S. (2019). Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy-Basel 9, 298. doi: 10.3390/ agronomy9060298 Gutierrez, C. (2016). 25 years of cell cycle research: what's ahead? Trends Plant Sci. 21, 823–833. doi: 10.1016/j.tplants.2016.06.007 Haeldermans, T., Lataf, M. A., Vanroelen, G., Samyn, P., Vandamme, D., Cuypers, A., et al. (2019). Numerical prediction of the mean residence time of solid materials in a pilot-scale rotary kiln. Powder Technol. 354, 392–401. doi: 10.1016/ j.powtec.2019.06.008 Haeldermans, T., Puente Torres, J., Vercruysse, W., Carleer, R., Samyn, P., Vandamme, D., et al. (2023). An experimentally validated selection protocol for biochar as a sustainable component in green roofs. Waste 1, 176–194. Available at: https://www.mdpi.com/2813-0391/1/1/13. He, X. Y., Liu, Z. X., Niu, W. J., Yang, L., Zhou, T., Qin, D., et al. (2018). Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy 143, 746–756. doi: 10.1016/j.energy.2017.11.062 Hendrix, S., Keunen, E., Mertens, A. I. G., Beemster, G. T. S., Vangronsveld, J., and Cuypers, A. (2018). Cell cycle regulation in different leaves of Arabidopsis thaliana plants grown under control and cadmium-exposed conditions. Environ. Exp. Bot. 155, 441–452. doi: 10.1016/j.envexpbot.2018.06.026 Huang, C., Sun, X. Y., Wang, L. J., Storer, P., Siddique, K. H. M., and Solaiman, Z. M. (2021). Nutrients leaching from tillage soil amended with wheat straw biochar influenced by fertiliser type. Agriculture-Basel 11, 1132. doi: 10.3390/ agriculture11111132 Huang, L., and Gu, M. M. (2019). Effects of biochar on container substrate properties and growth of plants-A review. Horticulturae 5, 14. doi: 10.3390/horticulturae5010014 Järvan, M., Edesi, L., and Adamson, A. (2012). Effect of sulphur fertilization on grain yield and yield components of winter wheat. Acta Agricult. Scandinavica Section B-Soil Plant Sci. 62, 401–409. doi: 10.1080/09064710.2011.630677 Jeon, S. H., Kuppusamy, S., Yoon, Y. E., Kim, H. T., and Lee, Y. B. (2019). Are there as many essential and non-essential minerals in hydroponic strawberry (Fragaria ananassa L.) compared to those grown in soil? Biol. Trace Elem. Res. 187, 562–567. doi: 10.1007/s12011-018-1394-y Jindo, K., Sanchez-Monedero, M. A., Mastrolonardo, G., Audette, Y., Higashikawa, F. S., Silva, C. A., et al. (2020). Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the biochar roles in growing media, composting and as soil amendment. Chem. Biol. Technol. Agric. 7, 16. doi: 10.1186/s40538-020- 00179-3 Joseph, S., Cowie, A. L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., et al. (2021). How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. Global Change Biol. Bioenergy 13, 1731–1764. doi: 10.1111/ gcbb.12885 Langenfeld, N. J., Pinto, D. F., Faust, J. E., Heins, R., and Bugbee, B. (2022). Principles of nutrient and water management for indoor agriculture. Sustainability 14, 10204. doi: 10.3390/su141610204 Lataf, A., Jozefczak, M., Vandecasteele, B., Viaene, J., Schreurs, S., Carleer, R., et al. (2022). The effect of pyrolysis temperature and feedstock on biochar agronomic properties. J. Anal. Appl. Pyrol. 168, 105728. doi: 10.1016/j.jaap.2022.105728 Lee, H. O., Davidson, J. M., and Duronio, R. J. (2009). Endoreplication: polyploidy with purpose. Genes Dev. 23, 2461–2477. doi: 10.1101/gad.1829209 Lv, R. J., Wang, Y., Wang, Q. J., Zeng, Y. H., and Shang, Q. Y. (2022). Residual effect of straw biochar on grain yield and yield attributes in a double rice cropping system of subtropical China. Plant Soil Environ. 68, 328–337. doi: 10.17221/147/2022-pse Martinez-Gomez, A., Poveda, J., and Escobar, C. (2022). Overview of the use of biochar from main cereals to stimulate plant growth. Front. Plant Sci. 13. doi: 10.3389/ fpls.2022.912264 Nelson, M., Dempster, W. F., and Allen, J. P. (2008). Integration of lessons from recent research for "Earth to Mars" life support systems. Adv. Space Res. 41, 675–683. doi: 10.1016/j.asr.2007.02.075 Nematian, M., Keske, C., and Ng'ombe, J. N. (2021). A techno-economic analysis of biochar production and the bioeconomy for orchard biomass. Waste Manage. 135, 467–477. doi: 10.1016/j.wasman.2021.09.014 Neogi, S., Sharma, V., Khan, N., Chaurasia, D., Ahmad, A., Chauhan, S., et al. (2022). Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. Chemosphere 293, 133474. doi: 10.1016/j.chemosphere.2021.133474 O'Sullivan, C. A., Bonnett, G. D., McIntyre, C. L., Hochman, Z., and Wasson, A. P. (2019). Strategies to improve the productivity, product diversity and profitability of urban agriculture. Agric. Syst. 174, 133–144. doi: 10.1016/j.agsy.2019.05.007 Philipp, N., Weichert, H., Bohra, U., Weschke, W., Schulthess, A. W., and Weber, H. (2018). Grain number and grain yield distribution along the spike remain stable despite breeding for high yield in winter wheat. PLoS One 13 (10). e0205452. Putra, P. A., and Yuliando, H. (2015). “Soilless culture system to support water use efficiency and product quality: a review,” in International Conference on Agro-Industry (Icoa): Sustainable and Competitive Agro-Industry for Human Welfare YogyakartaIndonesia 2014, Vol. 3. 283–288. doi: 10.1016/j.aaspro.2015.01.054 Rufı-Sal ́ ıs, M., Petit-Boix, A., Villalba, G., Sanjuan-Delma ́ ́s, D., Parada, F., ErcillaMontserrat, M., et al. (2020). Recirculating water and nutrients in urban agriculture: An opportunity towards environmental sustainability and water use efficiency? J. Cleaner Product. 261, 121213. doi: 10.1016/j.jclepro.2020.121213 Santolini, E., Bovo, M., Barbaresi, A., Torreggiani, D., and Tassinari, P. (2021). Turning agricultural wastes into biomaterials: assessing the sustainability of scenarios of circular valorization of corn cob in a life-cycle perspective. Appl. Sciences-Basel 11, 6281. doi: 10.3390/app11146281 Smider, B., and Singh, B. (2014). Agronomic performance of a high ash biochar in two contrasting soils. Agric. Ecosyst. Environ. 191, 99–107. doi: 10.1016/ j.agee.2014.01.024 Solaiman, Z. M., Murphy, D. V., and Abbott, L. K. (2012). Biochars influence seed germination and early growth of seedlings. Plant Soil 353, 273–287. doi: 10.1007/ s11104-011-1031-4 Sugimoto-Shirasu, K., and Roberts, K. (2003). Big it up": endoreduplication and cellsize control in plants. Curr. Opin. Plant Biol. 6, 544–553. doi: 10.1016/j.pbi.2003.09.009 Tseng, M. L., Chiu, A. S. F., Chien, C. F., and Tan, R. R. (2019). Pathways and barriers to circularity in food systems. Resour. Conserv. Recycling 143, 236–237. doi: 10.1016/ j.resconrec.2019.01.015 Vandionant, S., Hendrix, S., Alfano, R., Plusquin, M., and Cuypers, A. (2023). Comparing cadmium-induced effects on the regulation of the DNA damage response and cell cycle progression between entire rosettes and individual leaves of Arabidopsis thaliana. Plant Physiol. Biochem. 204, 108105. doi: 10.1016/j.plaphy.2023.108105 Vanreppelen, K., Vanderheyden, S., Kuppens, T., Schreurs, S., Yperman, J., and Carleer, R. (2014). Activated carbon from pyrolysis of brewer's spent grain: Production and adsorption properties. Waste Manage. Res. 32, 634–645. doi: 10.1177/ 0734242x14538306 Vaughn, S. F., Eller, F. J., Evangelista, R. L., Moser, B. R., Lee, E., Wagner, R. E., et al. (2015). Evaluation of biochar-anaerobic potato digestate mixtures as renewable components of horticultural potting media. Ind. Crops Prod. 65, 467–471. doi: 10.1016/j.indcrop.2014.10.040 Venezia, A., Colla, G., Di Cesare, C., Stipic, M., and Massa, D. (2022). The effect of different fertigation strategies on salinity and nutrient dynamics of cherry tomato grown in a gutter subirrigation system. Agric. Water Manage. 262, 107408. doi: 10.1016/j.agwat.2021.107408 Vercruysse, W., Kunnen, K., Gomes, C. L., Marchal, W., Cuypers, A., and Vandamme, D. (2024). Common Ivy (Hedera helix L.) Derived Biochar's Potential as a Substrate Amendment: Effects of Leached Nutrients on Arabidopsis thaliana Plant Development. Waste Biomass Valor. 15, 2071–2082. doi: 10.1007/s12649-023-02266-6 Vercruysse, W., Smeets, J., Haeldermans, T., Joos, B., Hardy, A., Samyn, P., et al. (2021). Biochar from raw and spent common ivy: Impact of preprocessing and pyrolysis temperature on biochar properties. J. Anal. Appl. Pyrol. 159, 105294. doi: 10.1016/j.jaap.2021.105294 Viger, M., Hancock, R. D., Miglietta, F., and Taylor, G. (2015). More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. Global Change Biol. Bioenergy 7, 658–672. doi: 10.1111/ gcbb.12182 Wang, Y. Y., Lin, G. Y., Li, X., Tai, M. H., Song, S., Tan, H. T. W., et al. (2023). Meeting the heavy-metal safety requirements for food crops by using biochar: An investigation using sunflower as a representative plant under different atmospheric CO2 concentrations. Sci. Total Environ. 867, 161452. doi: 10.1016/ j.scitotenv.2023.161452 Wang, H. X., Xu, J. L., and Sheng, L. X. (2020). Preparation of straw biochar and application of constructed wetland in China: A review. J. Cleaner Product. 273, 123131. doi: 10.1016/j.jclepro.2020.123131 Weber, C. F. (2017). Broccoli microgreens: A mineral-rich crop that can diversify food systems. Front. Nutr. 4. doi: 10.3389/fnut.2017.00007 Woolf, D., Lehmann, J., Ogle, S., Kishimoto-Mo, A. W., McConkey, B., and Baldock, J. (2021). Greenhouse gas inventory model for biochar additions to soil. Environ. Sci. Technol. 55, 14795–14805. doi: 10.1021/acs.est.1c02425 Yang, H. P., Yan, R., Chen, H. P., Zheng, C. G., Lee, D. H., and Liang, D. T. (2006). In-depth investigation of biomass pyrolysis based on three major components: Hemicellulose, cellulose and lignin. Energy Fuels 20, 388–393. doi: 10.1021/ef0580117 Zhang, L., Sun, X. Y., Tian, Y., and Gong, X. Q. (2014). Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Scientia Hortic. 176, 70–78. doi: 10.1016/ j.scienta.2014.06.021 Zhou, D. F., Meinke, H., Wilson, M., Marcelis, L. F. M., and Heuvelink, E. (2021). Towards delivering on the sustainable development goals in greenhouse production systems. Resour. Conserv. Recycling 169, 105379. doi: 10.1016/j.resconrec.2020.105379-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.3389/fpls.2024.1414212-
dc.description.otherThe manuscript was published in Frontiers, Frontiers in Plant Science, Section Plant Nutrition, in a research topic called 'Application and Mechanism of Plant Biostimulants, Biochar, Fertilizer Products, and Other Nutrition-related Agrochemicals'. At the moment of copying this link, 18 articles were published in this Research Topic. I don't know how this translates to the metadata, but I mention it here in case it matters. No specific pages are available. https://www.frontiersin.org/research-topics/62585/application-and-mechanism-of-plant-biostimulants-biochar-fertilizer-products-and-other-nutrition-related-agrochemicals/articles The research was funded by VLAIO and Flanders' FOOD, which are no commercial facilities. The Funding information as written in the manuscript, in case it is needed anyway: The author(s) declare financial support was received for the research, authorship and/or publication of this article. The authors declare that this study received funding from Flanders’ FOOD and Flanders Innovation and Entrepreneurship (VLAIO) as part of the SpaceBakery project (grant number HBC.2019.0100). The funder was not involved in the study design, collection, analysis, interpretation of data, the writing of this article or the decision to submit it for publication.-
local.provider.typePdf-
local.uhasselt.internationalno-
item.fullcitationKUNNEN, Kris; Ali, Muntasir; LATAF, Amine; Van Hees, May; Nauts, Robin; HOREMANS, Nele; VANDAMME, Dries & CUYPERS, Ann (2024) From crop left-overs to nutrient resource: growth-stimulating potential of biochar in nutrient solutions for wheat soilless cultivation systems. In: Frontiers in plant science, 15.-
item.contributorKUNNEN, Kris-
item.contributorAli, Muntasir-
item.contributorLATAF, Amine-
item.contributorVan Hees, May-
item.contributorNauts, Robin-
item.contributorHOREMANS, Nele-
item.contributorVANDAMME, Dries-
item.contributorCUYPERS, Ann-
item.accessRightsOpen Access-
item.fulltextWith Fulltext-
crisitem.journal.issn1664-462X-
crisitem.journal.eissn1664-462X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Kunnen et al 2024_Frontiers in Plant Sciences.pdfPublished version1.39 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.