Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44527
Full metadata record
DC FieldValueLanguage
dc.contributor.authorROZO POSADA, Alejandro-
dc.contributor.authorFAES, Christel-
dc.contributor.authorBeutels, Philippe-
dc.contributor.authorPepermans, Koen-
dc.contributor.authorHENS, Niel-
dc.contributor.authorVan Damme, Pierre-
dc.contributor.authorNEYENS, Thomas-
dc.date.accessioned2024-10-24T14:44:45Z-
dc.date.available2024-10-24T14:44:45Z-
dc.date.issued2024-
dc.date.submitted2024-10-09T09:50:35Z-
dc.identifier.citationSpatial and spatio-temporal epidemiology, 50 (Art N° 100676)-
dc.identifier.urihttp://hdl.handle.net/1942/44527-
dc.description.abstractOpen surveys complementing surveillance programs often yield opportunistically sampled data characterised by spatio-temporal imbalance. We set up our study to understand to what extent spatio-temporal statistical models using such data achieve in describing epidemiological trends. We used self-reported symptomatic COVID-19 data from two Belgian regions, Flanders and the Brussels-Capital Region. These data were collected in a large-scale open survey with spatio-temporally imbalanced participation rates. We compared incidence estimates of both self-reported symptoms and test-confirmed COVID-19 cases obtained through generalised linear mixed models correcting for spatio-temporal correlation. We additionally simulated symptom incidences under different sampling strategies to explore the impact of sample imbalance, sample size and disease incidence, on trend detection. Our study shows that spatio-temporal sample imbalance generally does not lead to bad model performances in spatio-temporal trend estimation and high-risk area detection. Except for low-incidence diseases, collecting large samples will often be more essential than ensuring spatio-temporally sample balance.-
dc.language.isoen-
dc.subject.otherOpportunistic sampling-
dc.subject.otherSample size-
dc.subject.otherSpatio-temporal autocorrelation-
dc.subject.otherEcological study-
dc.subject.otherSample imbalance-
dc.subject.otherSyndromic surveillance-
dc.titleThe effect of spatio-temporal sample imbalance in epidemiologic surveillance using opportunistic samples: An ecological study using real and simulated self-reported COVID-19 symptom data-
dc.typeJournal Contribution-
dc.identifier.volume50-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr100676-
dc.identifier.doi10.1016/j.sste.2024.100676-
dc.identifier.isiWOS:001282460800001-
local.provider.typeWeb of Science-
local.uhasselt.internationalno-
item.contributorROZO POSADA, Alejandro-
item.contributorFAES, Christel-
item.contributorBeutels, Philippe-
item.contributorPepermans, Koen-
item.contributorHENS, Niel-
item.contributorVan Damme, Pierre-
item.contributorNEYENS, Thomas-
item.fullcitationROZO POSADA, Alejandro; FAES, Christel; Beutels, Philippe; Pepermans, Koen; HENS, Niel; Van Damme, Pierre & NEYENS, Thomas (2024) The effect of spatio-temporal sample imbalance in epidemiologic surveillance using opportunistic samples: An ecological study using real and simulated self-reported COVID-19 symptom data. In: Spatial and spatio-temporal epidemiology, 50 (Art N° 100676).-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn1877-5845-
crisitem.journal.eissn1877-5853-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
1-s2.0-S1877584524000431-main.pdf
  Restricted Access
Published version10.58 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.