Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/44589
Title: | Graph Database Solutions for Managing and Analysing Spatio-Temporal Data in Transportation Networks | Authors: | BOLLEN, Erik | Advisors: | Kuijpers, Bart | Issue Date: | 2024 | Abstract: | In thisthesis,weadaptandextendthetheoryoftheexistingpropertygraphdatabases to modeltransportationnetworks,wherenodesandedgescancontaintemporalproperties that aretimeseries,resultinginPropertyGraphswithTimeSeries.Weproposealanguage based onregularpropertygraphlogicforqueryingthesePropertyGraphswithTimeSeries, in whichtime-seriesandmeasurementpatternsmaybecombinedwithgraphpatternsto describe,retrieveandanalysereal-lifesituations.Further,wedemonstratethemodeland language inpracticebyleveragingtheGraphPatternMatchingLanguageasabridgebetween theory andpractice.TheproposedgraphmodelisimplementedinNeo4jwithagraph- embeddedstructureforthetimeseries.ByleveragingNeo4js’queryengine,werealise the querylanguagewithatranslationlayer.Usecasesexplorequestionsthathydrology researchersposeinthecontextofthe“InternetofWater”,electricalengineerscanposeon localdistributiongridsandrailwaymanagersconsiderindailyoperationmanagement.In addition totheanalyticalcapabilitiesprovidedbythequerylanguageandmathematical expression implementedinexistingdatabasesystems,amoreOLAP-likeaggregationand exploration mechanismisresearched.Withadefinedhierarchystructure,aggregationtrees can bebuiltontopoftheoriginaldata,allowinguserstoexploredataindifferentspaceand time levelcombinations. This way,wewanttoprovideaunifieddatamanagementsolution,includingstorageand data analysiscapabilities,thatcanbeusedbydomainexpertswithgeneraldatabaseknowl- edge. Indoingso,reducingtheset-uptimeandmaintenanceneededinresearchprojects using sensornetworksthattrytosolvetransportationnetwork-relatedresearchquestions. | Document URI: | http://hdl.handle.net/1942/44589 | Category: | T1 | Type: | Theses and Dissertations |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
thesis_merged.pdf Until 2029-10-17 | Published version | 16.42 MB | Adobe PDF | View/Open Request a copy |
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.