Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44606
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorHooyberghs, Jef-
dc.contributor.advisorKolpashchikov, Dmitry-
dc.contributor.authorMUELLER, Brittany-
dc.date.accessioned2024-11-06T08:29:11Z-
dc.date.available2024-11-06T08:29:11Z-
dc.date.issued2024-
dc.date.submitted2024-11-05T19:03:51Z-
dc.identifier.urihttp://hdl.handle.net/1942/44606-
dc.description.abstractHybridization probes have been used to detect specific nucleic acids for the last 50 years. These probes have medical applications, including identifying disease-causing genes or multi-drug resistant bacteria. To be considered robust, a probe should have high selectivity at ambient or low temperatures, be able to detect folded analytes, and remain economical for use in clinical settings. This work will uncover a challenge faced by molecular beacon probes (MBP), describe an adaptation to MBPs that enables the hybridization of the probe to a folded target, a multicomponent DNA sensor (OWL2) that overcomes common challenges faced by hybridization probes, and a thresholding sensor (MB-Th) that allows for the quantification of microRNA. Using ssDNA segments, the MBP adaptation and OWL2 sensor are able to hybridize with and detect folded analytes. The OWL2 sensor contains two analyte-binding arms to unwind folded analytes and two sequence-specific strands that bind both the analyte and a universal molecular beacon (UMB) probe to form a fluorescent ‘OWL’ structure. The sensor can differentiate single base mismatches in folded analytes in the temperature range of 5–38 °C, even when challenged with excess wild-type analytes. The MB-Th sensor consists of two gates with increasing affinity for the target, with each varying in thermodynamic stability. The gates bind to separate molecular beacons, each with a unique fluorophore, and produce distinct signals that can be measured simultaneously. Both sensor designs are cost-efficient since the same UMB probe can be used to detect any analyte sequence. These sensors have significant clinical benefits for diagnosing non-invasive early-stage cancer and cancers associated with miRNA dysregulation.-
dc.description.sponsorshipThis work was supported by the National Science Foundation through the CCF: Software and Hardware Foundations under cooperative agreement SHF-1907824 and CCF: SHF-2226021, and by the Special Research Fund (BOF) of Hasselt University: BOF23BL05-
dc.language.isoen-
dc.subject.otherDNA Nanotechnology-
dc.subject.otherhybridization sensor-
dc.subject.othercancer detection-
dc.subject.otherbiomarker detection-
dc.subject.otherDNA Nanostructure-
dc.subject.otherMolecular beacon probe-
dc.titleDNA Nanotechnology: The Development of Multi-Functional Hybridization Sensors-
dc.typeTheses and Dissertations-
local.format.pages195-
local.bibliographicCitation.jcatT1-
dc.relation.references1 S. Nurk, S. Koren, A. Rhie, M. Rautiainen, A. V. Bzikadze, A. Mikheenko, M. R. Vollger, N. Altemose, L. Uralsky, A. Gershman, S. Aganezov, S. J. Hoyt, M. Diekhans, G. A. Logsdon, M. Alonge, S. E. Antonarakis, M. Borchers, G. G. Bouffard, S. Y. Brooks, G. V. Caldas, N.-C. Chen, H. Cheng, C.-S. Chin, W. Chow, L. G. de Lima, P. C. Dishuck, R. Durbin, T. Dvorkina, I. T. Fiddes, G. Formenti, R. S. Fulton, A. Fungtammasan, E. Garrison, P. G. S. Grady, T. A. Graves-Lindsay, I. M. Hall, N. F. Hansen, G. A. Hartley, M. Haukness, K. Howe, M. W. Hunkapiller, C. Jain, M. Jain, E. D. Jarvis, P. Kerpedjiev, M. Kirsche, M. Kolmogorov, J. Korlach, M. Kremitzki, H. Li, V. V. Maduro, T. Marschall, A. M. McCartney, J. McDaniel, D. E. Miller, J. C. Mullikin, E. W. Myers, N. D. Olson, B. Paten, P. Peluso, P. A. Pevzner, D. Porubsky, T. Potapova, E. I. Rogaev, J. A. Rosenfeld, S. L. Salzberg, V. A. Schneider, F. J. Sedlazeck, K. Shafin, C. J. Shew, A. Shumate, Y. Sims, A. F. A. Smit, D. C. Soto, I. Sović, J. M. Storer, A. Streets, B. A. Sullivan, F. Thibaud-Nissen, J. Torrance, J. Wagner, B. P. Walenz, A. Wenger, J. M. D. Wood, C. Xiao, S. M. Yan, A. C. Young, S. Zarate, U. Surti, R. C. McCoy, M. Y. Dennis, I. A. Alexandrov, J. L. Gerton, R. J. O’Neill, W. Timp, J. M. Zook, M. C. Schatz, E. E. Eichler, K. H. Miga and A. M. Phillippy, Science, 2022, 376, 44–53. 2 R. Sachidanandam, D. Weissman, S. C. Schmidt, J. M. Kakol, L. D. Stein, G. Marth, S. Sherry, J. C. Mullikin, B. J. Mortimore, D. L. Willey, S. E. Hunt, C. G. Cole, P. C. Coggill, C. M. Rice, Z. Ning, J. Rogers, D. R. Bentley, P.-Y. Kwok, E. R. Mardis, R. T. Yeh, B. Schultz, L. Cook, R. Davenport, M. Dante, L. Fulton, L. Hillier, R. H. Waterston, J. D. McPherson, B. Gilman, S. Schaffner, W. J. Van Etten, D. Reich, J. Higgins, M. J. Daly, B. Blumenstiel, J. Baldwin, N. Stange-Thomann, M. C. Zody, L. Linton, E. S. Lander, D. Altshuler, The International SNP Map Working Group, Cold Spring Harbor Laboratories:, National Center for Biotechnology Information:, The Sanger Centre:, Washington University in St. Louis:, and Whitehead/MIT Center for Genome Research:, Nature, 2001, 409, 928–933. 3 J. Hanson, D. Brezavar, S. Hughes, S. Amudhavalli, E. Fleming, D. Zhou, J. T. Alaimo and P. E. Bonnen, Clin. Genet., 2022, 101, 214–220. 4 A. Corsi, C. Bombieri, M. T. Valenti and M. G. Romanelli, Int. J. Mol. Sci., 2022, 23, 15383. 5 M. Niblock and J.-M. Gallo, Biochem. Soc. Trans., 2012, 40, 677–680. 6 T. Sposito, E. Preza, C. J. Mahoney, N. Setó-Salvia, N. S. Ryan, H. R. Morris, C. Arber, M. J. Devine, H. Houlden, T. T. Warner, T. J. Bushell, M. Zagnoni, T. Kunath, F. J. Livesey, N. C. Fox, M. N. Rossor, J. Hardy and S. Wray, Hum. Mol. Genet., 2015, 24, 5260–5269. 7 H. Zetterberg and B. B. Bendlin, Mol. Psychiatry, 2021, 26, 296–308. 8 T. G. Richardson, G. M. Leyden, Q. Wang, J. A. Bell, B. Elsworth, G. D. Smith and M. V. Holmes, PLOS Biol., 2022, 20, e3001547. 9 A. J. Saykin, L. Shen, X. Yao, S. Kim, K. Nho, S. L. Risacher, V. K. Ramanan, T. M. Foroud, K. M. Faber, N. Sarwar, L. M. Munsie, X. Hu, H. D. Soares, S. G. Potkin, P. M. Thompson, J. S. K. Kauwe, R. Kaddurah-Daouk, R. C. Green, A. W. Toga, M. W. Weiner and A. D. N. Initiative, Alzheimers Dement., 2015, 11, 792–814. 10 Y. Deming, Z. Li, M. Kapoor, O. Harari, J. L. Del-Aguila, K. Black, D. Carrell, Y. Cai, M. V. Fernandez, J. Budde, S. Ma, B. Saef, B. Howells, K. Huang, S. Bertelsen, A. M. Fagan, D. M. Holtzman, J. C. Morris, S. Kim, A. J. Saykin, P. L. De Jager, M. Albert, A. Moghekar, R. O’Brien, M. Riemenschneider, R. C. Petersen, K. Blennow, H. Zetterberg, L. Minthon, V. M. Van Deerlin, V. M.-Y. Lee, L. M. Shaw, J. Q. Trojanowski, G. Schellenberg, J. L. Haines, R. Mayeux, M. A. Pericak-Vance, L. A. Farrer, E. R. Peskind, G. Li, A. F. Di Narzo, J. S. K. Kauwe, A. M. Goate, C. Cruchaga, Alzheimer’s Disease Neuroimaging Initiative (ADNI), and The Alzheimer Disease Genetic Consortium (ADGC), Acta Neuropathol. (Berl.), 2017, 133, 839–856. 11 J. Stevenson-Hoare, A. Heslegrave, G. Leonenko, D. Fathalla, E. Bellou, L. Luckcuck, R. Marshall, R. Sims, B. P. Morgan, J. Hardy, B. de Strooper, J. Williams, H. Zetterberg and V. Escott-Price, Brain, 2023, 146, 690–699. 12 A. F. Schmidt, C. Finan, M. Gordillo-Marañón, F. W. Asselbergs, D. F. Freitag, R. S. Patel, B. Tyl, S. Chopade, R. Faraway, M. Zwierzyna and A. D. Hingorani, Nat. Commun., 2020, 11, 3255. 13 M. V. Holmes, M. Ala-Korpela and G. D. Smith, Nat. Rev. Cardiol., 2017, 14, 577–590. 14 A. E. A. Surace and C. M. Hedrich, Front. Immunol., , DOI:10.3389/fimmu.2019.01525. 15 A. X. Maihofer, A. Ratanatharathorn, S. M. J. Hemmings, K. H. Costenbader, V. Michopoulos, R. Polimanti, A. O. Rothbaum, S. Seedat, E. A. Mikita, A. K. Smith, R. M. Salem, R. A. Shaffer, T. Wu, J. Sebat, K. J. Ressler, M. B. Stein, K. C. Koenen, E. J. Wolf, J. A. Sumner and C. M. Nievergelt, Transl. Psychiatry, 2024, 14, 1–10. 16 M. Bagheri, C. Wang, M. Shi, A. Manouchehri, K. T. Murray, M. B. Murphy, C. M. Shaffer, K. Singh, L. K. Davis, G. P. Jarvik, I. B. Stanaway, S. Hebbring, M. P. Reilly, R. E. Gerszten, T. J. Wang, J. D. Mosley and J. F. Ferguson, Sci. Rep., 2021, 11, 15652. 17 X. Zhang, Y. Li, P. Qi and Z. Ma, Int. J. Med. Sci., 2018, 15, 1443–1448. 18 H. Zhu, C. Han and T. Wu, Carcinogenesis, 2015, 36, 1213–1222. 19 L.-L. Fang, X.-H. Wang, B.-F. Sun, X.-D. Zhang, X.-H. Zhu, Z.-J. Yu and H. Luo, Int. J. Mol. Med., 2017, 40, 1624–1630. 20 D. Petrova, R. Jankova, A. Yosifova, V. Tzenova, I. Dimova and D. Toncheva, Onkologie, 2006, 29, 198–200. 21 A. W. Hemming, N. L. Davis, A. Kluftinger, B. Robinson, N. F. Quenville, B. Liseman and J. Lcriche, J. Surg. Oncol., 1992, 51, 147–152. 22 A. M. Kluftinger, B. W. Robinson, N. F. Quenville, R. J. Finley and N. L. Davis, Surg. Oncol., 1992, 1, 97–105. 23 R. Zhang, R. Liu, C. Liu, Y. Niu, J. Zhang, B. Guo, C.-Y. Zhang, J. Li, J. Yang and X. Chen, Cell. Physiol. Biochem., 2017, 42, 1559–1574. 24 S. Zhuang and N. Liu, Kidney Int. Suppl., 2014, 4, 70–74. 25 S. He, N. Liu, G. Bayliss and S. Zhuang, Am. J. Physiol.-Ren. Physiol., 2013, 304, F356–F366. 26 J. Pancewicz-Wojtkiewicz, Cancer Med., 2016, 5, 3572–3578. 27 T. Sonoda, S. Nishikawa, R. Sakakibara, M. Saiki, R. Ariyasu, J. Koyama, S. Kitazono, N. Yanagitani, A. Horiike, F. Ohyanagi, H. Ninomiya, Y. Ishikawa and M. Nishio, Respir. Med. Case Rep., 2018, 24, 19–21. 28 Y. Wang, Z. Guo, Y. Li and Q. Zhou, Open Med., 2016, 11, 68–77. 29 T. Masuda, S. Miura, Y. Sato, M. Tachihara, A. Bessho, A. Nakamura, T. Miyawaki, K. Yoshimine, M. Mori, H. Shiraishi, K. Hamai, K. Haratani, S. Maeda, E. Tabata, C. Kitagawa, J. Tanizaki, T. Imai, S. Nogami, N. Yamamoto, K. Nakagawa and N. Hattori, Sci. Rep., 2023, 13, 19729. 30 M. A. Field, Immunol. Cell Biol., 2021, 99, 146–156. 31 P. D. Stenson, E. V. Ball, M. Mort, A. D. Phillips, J. A. Shiel, N. S. T. Thomas, S. Abeysinghe, M. Krawczak and D. N. Cooper, Hum. Mutat., 2003, 21, 577–581. 32 S. H. Jiang, V. Athanasopoulos, J. I. Ellyard, A. Chuah, J. Cappello, A. Cook, S. B. Prabhu, J. Cardenas, J. Gu, M. Stanley, J. A. Roco, I. Papa, M. Yabas, G. D. Walters, G. Burgio, K. McKeon, J. M. Byers, C. Burrin, A. Enders, L. A. Miosge, P. F. Canete, M. Jelusic, V. Tasic, A. C. Lungu, S. I. Alexander, A. R. Kitching, D. A. Fulcher, N. Shen, T. Arsov, P. A. Gatenby, J. J. Babon, D. F. Mallon, C. de Lucas Collantes, E. A. Stone, P. Wu, M. A. Field, T. D. Andrews, E. Cho, V. Pascual, M. C. Cook and C. G. Vinuesa, Nat. Commun., 2019, 10, 2201. 33 G. Cao, Y. Qiu, K. Long, Y. Ma, H. Luo, M. Yang, J. Hou, D. Huo and C. Hou, Anal. Chem., 2022, 94, 17653–17661. 34 C. Graham, A. Eshaghi, A. Sarabia, S. Zittermann, P. Stapleton, J. V. Kus and S. N. Patel, Access Microbiol, 2020, 2, acmi000111. 35 T.-L. Li, M.-W. Wu, W.-C. Lin, C.-H. Lai, Y.-H. Chang, L.-J. Su and W.-Y. Chen, Anal. Bioanal. Chem., 2019, 411, 3871–3880. 36 C. P. Paweletz, A. G. Sacher, C. K. Raymond, R. S. Alden, A. O’Connell, S. L. Mach, Y. Kuang, L. Gandhi, P. Kirschmeier, J. M. English, L. P. Lim, P. A. Jänne and G. R. Oxnard, Clin. Cancer Res., 2016, 22, 915–922. 37 E. C. Berglund, C. M. Lindqvist, S. Hayat, E. Övernäs, N. Henriksson, J. Nordlund, P. Wahlberg, E. Forestier, G. Lönnerholm and A.-C. Syvänen, BMC Genomics, 2013, 14, 856. 38 J. S. Welch, T. J. Ley, D. C. Link, C. A. Miller, D. E. Larson, D. C. Koboldt, L. D. Wartman, T. L. Lamprecht, F. Liu, J. Xia, C. Kandoth, R. S. Fulton, M. D. McLellan, D. J. Dooling, J. W. Wallis, K. Chen, C. C. Harris, H. K. Schmidt, J. M. Kalicki-Veizer, C. Lu, Q. Zhang, L. Lin, M. D. O’Laughlin, J. F. McMichael, K. D. Delehaunty, L. A. Fulton, V. J. Magrini, S. D. McGrath, R. T. Demeter, T. L. Vickery, J. Hundal, L. L. Cook, G. W. Swift, J. P. Reed, P. A. Alldredge, T. N. Wylie, J. R. Walker, M. A. Watson, S. E. Heath, W. D. Shannon, N. Varghese, R. Nagarajan, J. E. Payton, J. D. Baty, S. Kulkarni, J. M. Klco, M. H. Tomasson, P. Westervelt, M. J. Walter, T. A. Graubert, J. F. DiPersio, L. Ding, E. R. Mardis and R. K. Wilson, Cell, 2012, 150, 264–278. 39 T. Li, H. Zou, J. Zhang, H. Ding, C. Li, X. Chen, Y. Li, W. Feng and K. Kageyama, Analyst, 2022, 147, 3993–3999. 40 M. Azhar, R. Phutela, M. Kumar, A. H. Ansari, R. Rauthan, S. Gulati, N. Sharma, D. Sinha, S. Sharma, S. Singh, S. Acharya, S. Sarkar, D. Paul, P. Kathpalia, M. Aich, P. Sehgal, G. Ranjan, R. C. Bhoyar, K. Singhal, H. Lad, P. K. Patra, G. Makharia, G. R. Chandak, B. Pesala, D. Chakraborty and S. Maiti, Biosens. Bioelectron., 2021, 183, 113207. 41 V. Taly, D. Pekin, L. Benhaim, S. K. Kotsopoulos, D. Le Corre, X. Li, I. Atochin, D. R. Link, A. D. Griffiths, K. Pallier, H. Blons, O. Bouché, B. Landi, J. B. Hutchison and P. Laurent-Puig, Clin. Chem., 2013, 59, 1722–1731. 42 S. Bai, B. Xu, Y. Zhang, Y. Zhang, H. Dang, S. Yang, C. Zuo, L. Zhang, J. Li and G. Xie, Biosens. Bioelectron., 2020, 154, 112092. 43 N. Zhang and D. H. Appella, J. Infect. Dis., 2010, 201 Suppl 1, S42–S45. 44 M. B. Thayer, J. M. Lade, D. Doherty, F. Xie, B. Basiri, O. S. Barnaby, N. S. Bala and B. M. Rock, Sci. Rep., 2019, 9, 3566. 45 F. Bekkaoui, I. Poisson, W. Crosby, L. Cloney and P. Duck, BioTechniques, 1996, 20, 240–248. 46 Q. Huang, Z. Liu, Y. Liao, X. Chen, Y. Zhang and Q. Li, PLOS ONE, 2011, 6, e19206. 47 S. Tyagi and F. R. Kramer, Nat. Biotechnol., 1996, 14, 303–308. 48 V. V. Demidov and M. D. Frank-Kamenetskii, Trends Biochem Sci, 2004, 29, 62–71. 49 D. M. Kolpashchikov, Chem. Rev., 2010, 110, 4709–4723. 50 R. Van Hoof, M. Szymonik, S. K. Nomidis, K. Hollanders, A. Jacobs, I. Nelissen, P. Wagner and J. Hooyberghs, Sens. Actuators B Chem., 2022, 368, 132175. 51 L. Chen, H. Huang, Z. Wang, K. Deng and H. Huang, Talanta, 2022, 243, 123352. 52 X. Ke, Y. Ou, Y. Lin and T. Hu, Biosens. Bioelectron., 2022, 212, 114428. 53 M. Ahmed, N. M. Pollak, G. J. Devine and J. Macdonald, Sens. Actuators B Chem., 2022, 367, 132085. 54 M. Stancescu, T. A. Fedotova, J. Hooyberghs, A. Balaeff and D. M. Kolpashchikov, J. Am. Chem. Soc., 2016, 138, 13465–13468. 55 P. Hardinge and J. A. H. Murray, BMC Biotechnol., 2019, 19, 55. 56 P. W. K. Rothemund, Nature, 2006, 440, 297–302. 57 N. C. Seeman and H. F. Sleiman, Nat. Rev. Mater., 2017, 3, 1–23. 58 K. E. Dunn, F. Dannenberg, T. E. Ouldridge, M. Kwiatkowska, A. J. Turberfield and J. Bath, Nature, 2015, 525, 82–86. 59 Y. Tian, J. R. Lhermitte, L. Bai, T. Vo, H. L. Xin, H. Li, R. Li, M. Fukuto, K. G. Yager, J. S. Kahn, Y. Xiong, B. Minevich, S. K. Kumar and O. Gang, Nat. Mater., 2020, 19, 789–796. 60 C. Zhang, R. J. Macfarlane, K. L. Young, C. H. J. Choi, L. Hao, E. Auyeung, G. Liu, X. Zhou and C. A. Mirkin, Nat. Mater., 2013, 12, 741–746. 61 K. F. Wagenbauer, C. Sigl and H. Dietz, Nature, 2017, 552, 78–83. 62 L. L. Ong, N. Hanikel, O. K. Yaghi, C. Grun, M. T. Strauss, P. Bron, J. Lai-Kee-Him, F. Schueder, B. Wang, P. Wang, J. Y. Kishi, C. Myhrvold, A. Zhu, R. Jungmann, G. Bellot, Y. Ke and P. Yin, Nature, 2017, 552, 72–77. 63 N. C. Seeman and H. F. Sleiman, Nat. Rev. Mater., 2017, 3, 1–23. 64 N. C. Seeman, J. Theor. Biol., 1982, 99, 237–247. 65 S. Zhao, S. Zhang, H. Hu, Y. Cheng, K. Zou, J. Song, J. Deng, L. Li, X.-B. Zhang, G. Ke and J. Sun, Angew. Chem., 2023, 135, e202303121. 66 T. Tian, T. Zhang, S. Shi, Y. Gao, X. Cai and Y. Lin, Nat. Protoc., 2023, 18, 1028–1055. 67 B. Wei, M. Dai and P. Yin, Nature, 2012, 485, 623–626. 68 M. Lawal, J. Payne, H. Onyeaka, A. M. Alao and E. Okoampah, Nano Sel., 2024, 5, 2300078. 69 D. Houhoula, M. Kouzilou, C. Tzogias, V. Kyrana, C. Sflomos, J. Tsaknis and V. Lougovois, J. Food Res., 2017, 6, p34. 70 P. Valentini, A. Galimberti, V. Mezzasalma, F. De Mattia, M. Casiraghi, M. Labra and P. P. Pompa, Angew. Chem. Int. Ed., 2017, 56, 8094–8098. 71 P. Valentini, A. Galimberti, V. Mezzasalma, F. De Mattia, M. Casiraghi, M. Labra and P. P. Pompa, Angew. Chem., 2017, 129, 8206–8210. 72 Y. Zhang, F. Lu, K. G. Yager, D. van der Lelie and O. Gang, Nat. Nanotechnol., 2013, 8, 865–872. 73 B. Wei, M. Dai and P. Yin, Nature, 2012, 485, 623–626. 74 H. Yan, S. H. Park, G. Finkelstein, J. H. Reif and T. H. LaBean, Science, 2003, 301, 1882–1884. 75 S. Ko, H. Liu, Y. Chen and C. Mao, Biomacromolecules, 2008, 9, 3039–3043. 76 W. Sun, T. Jiang, Y. Lu, M. Reiff, R. Mo and Z. Gu, J. Am. Chem. Soc., 2014, 136, 14722–14725. 77 T. Tian, T. Zhang, S. Shi, Y. Gao, X. Cai and Y. Lin, Nat. Protoc., 2023, 18, 1028–1055. 78 Y. Nie, J. Jiang, K. Peng, Y. Chai and R. Yuan, Biosens. Bioelectron., 2021, 175, 112848. 79 S. Modi, S. M. G., D. Goswami, G. D. Gupta, S. Mayor and Y. Krishnan, Nat. Nanotechnol., 2009, 4, 325–330. 80 D. Gareau, A. Desrosiers and A. Vallée-Bélisle, Nano Lett., 2016, 16, 3976–3981. 81 C. Bu, L. Mu, X. Cao, M. Chen, G. She and W. Shi, Nanotechnology, 2018, 29, 295501. 82 Y.-J. Zhou, Y.-H. Wan, C.-P. Nie, J. Zhang, T.-T. Chen and X. Chu, Anal. Chem., 2019, 91, 10366–10370. 83 X. Zhang, L. Pan, R. Guo, Y. Zhang, F. Li, M. Li, J. Li, J. Shi, F. Qu, X. Zuo and X. Mao, Chem. Commun., 2022, 58, 3673–3676. 84 S. Li, Q. Jiang, S. Liu, Y. Zhang, Y. Tian, C. Song, J. Wang, Y. Zou, G. J. Anderson, J.-Y. Han, Y. Chang, Y. Liu, C. Zhang, L. Chen, G. Zhou, G. Nie, H. Yan, B. Ding and Y. Zhao, Nat. Biotechnol., 2018, 36, 258–264. 85 Y. Zhang, D. Bai, J. Pu, L. Zhang, W. Wang, T. Feng, J. Zhang, H. Yu, X. Han, K. Lv, L. Wang, Y. Guo and G. Xie, Chem. Eng. J., 2024, 499, 156044. 86 Z. Zhou, J. D. Brennan and Y. Li, Angew. Chem. Int. Ed., 2020, 59, 10401–10405. 87 N. Arulkumaran, C. Lanphere, C. Gaupp, J. R. Burns, M. Singer and S. Howorka, ACS Nano, 2021, 15, 4394–4404. 88 T. Galbadage, D. Liu, L. B. Alemany, R. Pal, J. M. Tour, R. S. Gunasekera and J. D. Cirillo, ACS Nano, 2019, 13, 14377–14387. 89 D. Liu, V. García-López, R. S. Gunasekera, L. Greer Nilewski, L. B. Alemany, A. Aliyan, T. Jin, G. Wang, J. M. Tour and R. Pal, ACS Nano, 2019, 13, 6813–6823. 90 J. Zhang, P. Zhao, W. Li, L. Ye, L. Li, Z. Li and M. Li, Angew. Chem. Int. Ed., 2022, 61, e202117562. 91 J. Hahn, S. F. J. Wickham, W. M. Shih and S. D. Perrault, ACS Nano, 2014, 8, 8765–8775. 92 S. M. Taghdisi, N. M. Danesh, M. Ramezani, R. Yazdian-Robati and K. Abnous, Mol. Pharm., 2018, 15, 1972–1978. 93 A. R. Chandrasekaran, Nat. Rev. Chem., 2021, 5, 225–239. 94 Y. T. E. Chiu, H. Li and C. H. J. Choi, Small, 2019, 15, 1805416. 95 P. Chidchob, T. G. W. Edwardson, C. J. Serpell and H. F. Sleiman, J. Am. Chem. Soc., 2016, 138, 4416–4425. 96 C. Lin, S. D. Perrault, M. Kwak, F. Graf and W. M. Shih, Nucleic Acids Res., 2013, 41, e40. 97 A. Shaw, E. Benson and B. Högberg, ACS Nano, 2015, 9, 4968–4975. 98 D. M. Kolpashchikov, Scientifica, 2012, 2012, e928783. 99 Created with BioRender.com. 100 E. Navarro, G. Serrano-Heras, M. J. Castaño and J. Solera, Clin. Chim. Acta, 2015, 439, 231–250. 101 S. A. E. Marras, S. Tyagi and F. R. Kramer, Clin. Chim. Acta, 2006, 363, 48–60. 102 M. W. McCarthy and T. J. Walsh, Expert Rev. Mol. Diagn., 2016, 16, 1025–1036. 103 V. Kia, A. Tafti, M. Paryan and S. Mohammadi-Yeganeh, Ir. J. Med. Sci. 1971 -, 2023, 192, 723–729. 104 E. M. Criscuolo, F. Barbanti and P. Spigaglia, Microbiol. Res., 2024, 15, 354–370. 105 Z. Ma, M. Ma, X. Cao, Y. Jiang and D. Gao, Microchim. Acta, 2024, 191, 430. 106 M. C. Mears, T. L. Olivier, D. Williams-Coplin, E. Espinoza and A. Bakre, Sci. Rep., 2024, 14, 18047. 107 Z. Zhang, S. Wang, J. Ma, T. Zhou, F. Wang, X. Wang and G. Zhang, ACS Biomater. Sci. Eng., 2020, 6, 3114–3121. 108 S. Tyagi, S. A. E. Marras and F. R. Kramer, Nat. Biotechnol., 2000, 18, 1191–1196. 109 Q. Guo, X. Yang, K. Wang, W. Tan, W. Li, H. Tang and H. Li, Nucleic Acids Res., 2009, 37, e20. 110 A. Tsourkas, M. A. Behlke, S. D. Rose and G. Bao, Nucleic Acids Res., 2003, 31, 1319–1330. 111 G. Bonnet, S. Tyagi, A. Libchaber and F. R. Kramer, Proc. Natl. Acad. Sci., 1999, 96, 6171–6176. 112 L. Peng and W. Tan, in Molecular Beacons, eds. C. J. Yang and W. Tan, Springer, Berlin, Heidelberg, 2013, pp. 19–43. 113 Y. Kim, C. J. Yang and W. Tan, Nucleic Acids Res., 2007, 35, 7279–7287. 114 S. A. Benner, Acc. Chem. Res., 2004, 37, 784–797. 115 P. Sheng, Z. Yang, Y. Kim, Y. Wu, W. Tan and S. A. Benner, Chem. Commun., 2008, 5128–5130. 116 J. Caton-Williams, B. Fiaz, R. Hoxhaj, M. Smith and Z. Huang, Sci. China Chem., 2012, 55, 80–89. 117 R. Liu, Q. Hua, Q. Lou, J. Wang, X. Li, Z. Ma and Y. Yang, J. Org. Chem., 2021, 86, 4763–4778. 118 Y. Li, C. Abraham, O. Suslov, O. Yaren, R. W. Shaw, M.-J. Kim, S. Wan, P. Marliere and S. A. Benner, ACS Synth. Biol., 2023, 12, 1772–1781. 119 S. Tyagi and F. R. Kramer, Nat. Biotechnol., 1996, 14, 303–308. 120 C. Nguyen, J. Grimes, Y. V. Gerasimova and D. M. Kolpashchikov, Chemistry, 2011, 17, 13052–8. 121 A. Tsourkas, M. A. Behlke, S. D. Rose and G. Bao, Nucleic Acids Res., 2003, 31, 1319–1330. 122 S. Tyagi, D. P. Bratu and F. R. Kramer, Nat. Biotechnol., 1998, 16, 49–53. 123 J. Perlette and W. Tan, Anal. Chem., 2001, 73, 5544–5550. 124 C. Rossi-Gendron, F. El Fakih, L. Bourdon, K. Nakazawa, J. Finkel, N. Triomphe, L. Chocron, M. Endo, H. Sugiyama, G. Bellot, M. Morel, S. Rudiuk and D. Baigl, Nat. Nanotechnol., 2023, 18, 1311–1318. 125 N. C. Seeman, J. Theor. Biol., 1982, 99, 237–247. 126 P. W. K. Rothemund, Nature, 2006, 440, 297–302. 127 A. Porchetta, R. Ippodrino, B. Marini, A. Caruso, F. Caccuri and F. Ricci, J. Am. Chem. Soc., 2018, 140, 947–953. 128 Y. Song, X. Jin, Y. Zhao, S. Cheng, S. Xu, S. Bu, L. Liu, C. Zhou and C. Pang, Microchim. Acta, 2024, 191, 553. 129 X. Huang, R. Narayanaswamy, K. Fenn, S. Szpakowski, C. Sasaki, J. Costa, P. Blancafort and P. M. Lizardi, DNA Cell Biol., 2012, 31, S-2. 130 M. Chern, P. M. Garden, R. C. Baer, J. E. Galagan and A. M. Dennis, Angew. Chem., 2020, 132, 21781–21786. 131 T. Hachigian, D. Lysne, E. Graugnard and J. Lee, ACS Omega, 2021, 6, 26888–26896. 132 A. K. D. Younger, N. C. Dalvie, A. G. Rottinghaus and J. N. Leonard, ACS Synth. Biol., 2017, 6, 311–325. 133 W. Hou, J. Du, T. Liu, W. Wang, Y. Ai, M. Zhou, H. Wang and Z. Wang, Food Anal. Methods, 2024, 17, 1394–1401. 134 Q. Huang, D. Chen, C. Du, Q. Liu, S. Lin, L. Liang, Y. Xu, Y. Liao and Q. Li, Proc. Natl. Acad. Sci., 2022, 119, e2110672119. 135 X. Li, Y. Huang, Y. Guan, M. Zhao and Y. Li, Anal. Chem., 2006, 78, 7886–7890. 136 Y.-W. Lin, H.-T. Ho, C.-C. Huang and H.-T. Chang, Nucleic Acids Res., 2008, 36, e123. 137 V. V. Demidov and M. D. Frank-Kamenetskii, Trends Biochem. Sci., 2004, 29, 62–71. 138 G. Xu, H. Zhao, J. Reboud and J. M. Cooper, ACS Nano, 2018, 12, 7213–7219. 139 M. Yang, R. Ji, Z. Zhao, W. Wang, Y. Lu, Z. Xiang and H. Yuan, Apoptosis Int. J. Program. Cell Death, 2023, 28, 222–232. 140 Y. S. Ang and L.-Y. L. Yung, Chem. Commun., 2016, 52, 4219–4222. 141 J. Chen, Z. Dai, H. Lv, Z. Jin, Y. Tang, X. Xie, J. Shi, F. Wang, Q. Li, X. Liu and C. Fan, Proc. Natl. Acad. Sci., 2024, 121, e2312596121. 142 T. Teng, J. Bernal-Chanchavac, N. Stephanopoulos and C. E. Castro, Adv. Sci., n/a, 2307257. 143 J. J. Li and W. Tan, Anal. Biochem., 2003, 312, 251–254. 144 J. Gao, Y. Li, W. Li, C. Zeng, F. Xi, J. Huang and L. Cui, RSC Adv., 2020, 10, 41618–41624. 145 Y. V. Gerasimova, A. Hayson, J. Ballantyne and D. M. Kolpashchikov, Chembiochem, 2010, 11, 1762–8. 146 J. F. Hopkins and S. A. Woodson, Nucleic Acids Res, 2005, 33, 5763–70. 147 B. A. Armitage, Drug Discov. Today, 2003, 8, 222–228. 148 S. A. Kushon, J. P. Jordan, J. L. Seifert, H. Nielsen, P. E. Nielsen and B. A. Armitage, J. Am. Chem. Soc., 2001, 123, 10805–10813. 149 S. Lane, J. Evermann, F. Loge and D. R. Call, Biosens. Bioelectron., 2004, 20, 728–735. 150 W.-T. Liu, H. Guo and J.-H. Wu, Appl. Environ. Microbiol., 2007, 73, 73–82. 151 J. Grimes, Y. V. Gerasimova and D. M. Kolpashchikov, Angew. Chem. Int. Ed., 2010, 49, 8950–8953. 152 N. Weigert, A.-L. Schweiger, J. Gross, M. Matthes, S. Corbacioglu, G. Sommer and T. Heise, Biol. Chem., 2023, 404, 1123–1136. 153 A. Tsourkas, M. A. Behlke, S. D. Rose and G. Bao, Nucleic Acids Res., 2003, 31, 1319–1330. 154 C. Fan, K. W. Plaxco and A. J. Heeger, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 9134–9137. 155 M. Zuker, Nucleic Acids Res., 2003, 31, 3406–3415. 156 T. Guo, W. Noble and D. P. Hanger, Acta Neuropathol, 2017, 133, 665–704. 157 W. A. Ferens and C. J. Hovde, Foodborne Pathog. Dis., 2011, 8, 465–487. 158 K. Wang, Z. Tang, C. J. Yang, Y. Kim, X. Fang, W. Li, Y. Wu, C. D. Medley, Z. Cao, J. Li, P. Colon, H. Lin and W. Tan, Angew. Chem. Int. Ed., 2009, 48, 856–870. 159 D. M. Kolpashchikov, Acc. Chem. Res., 2019, 52, 1949–1956. 160 B. L. Mueller, M. J. Liberman and D. M. Kolpashchikov, Nanoscale, 2023, 15, 5735–5742. 161 A. Abi and E. E. Ferapontova, Anal. Bioanal. Chem., 2013, 405, 3693–3703. 162 J. Huang, X. Yang, X. He, K. Wang, J. Liu, H. Shi, Q. Wang, Q. Guo and D. He, TrAC Trends Anal. Chem., 2014, 53, 11–20. 163 R. J. Karadeema, M. Stancescu, T. P. Steidl, S. C. Bertot and D. M. Kolpashchikov, Nanoscale, 2018, 10, 10116–10122. 164 M. Goedert and R. Jakes, Biochim. Biophys. Acta BBA - Mol. Basis Dis., 2005, 1739, 240–250. 165 M. Hasegawa, M. J. Smith, M. Iijima, T. Tabira and M. Goedert, FEBS Lett., 1999, 443, 93–96. 166 J. N. Zadeh, C. D. Steenberg, J. S. Bois, B. R. Wolfe, M. B. Pierce, A. R. Khan, R. M. Dirks and N. A. Pierce, J. Comput. Chem., 2011, 32, 170–173. 167 S. Cai, C. Lau and J. Lu, Anal. Chem., 2010, 82, 7178–7184. 168 P. Yakovchuk, E. Protozanova and M. D. Frank-Kamenetskii, Nucleic Acids Res., 2006, 34, 564–574. 169 D. V. Pyshnyi, S. G. Lokhov, M. A. Podyminogin, E. M. Ivanova and V. F. Zarytova, Nucleosides Nucleotides Nucleic Acids, 2000, 19, 1931–1941. 170 D. M. Kolpashchikov, J. Am. Chem. Soc., 2006, 128, 10625–10628. 171 F. Aboul-ela, D. Koh, I. Tinoco and F. H. Martin, Nucleic Acids Res., 1985, 13, 4811–4824. 172 X. Piao, L. Sun, T. Zhang, Y. Gan and Y. Guan, Acta Biochim. Pol., 2008, 55, 713–720. 173 J. I. Gyi, A. N. Lane, G. L. Conn and T. Brown, Biochemistry, 1998, 37, 73–80. 174 S. Takiguchi, F. Kambara, M. Tani, T. Sugiura and R. Kawano, Anal. Chem., 2023, 95, 14675–14685. 175 E. Koscianska, J. Starega-Roslan, L. J. Sznajder, M. Olejniczak, P. Galka-Marciniak and W. J. Krzyzosiak, BMC Mol. Biol., 2011, 12, 14. 176 S. Sharbati-Tehrani, B. Kutz-Lohroff, R. Bergbauer, J. Scholven and R. Einspanier, BMC Mol. Biol., 2008, 9, 34. 177 W. Ahmad, B. Gull, J. Baby and F. Mustafa, Curr. Issues Mol. Biol., 2021, 43, 457–484. 178 T. A. Molden, C. T. Niccum and D. M. Kolpashchikov, Angew. Chem., 2020, 132, 21376–21380. 179 Y. Sun, Y. Sun, W. Tian, C. Liu, K. Gao and Z. Li, Chem. Sci., 2018, 9, 1344–1351. 180 X. Chen, J. Huang, S. Zhang, F. Mo, S. Su, Y. Li, L. Fang, J. Deng, H. Huang, Z. Luo and J. Zheng, ACS Appl. Mater. Interfaces, 2019, 11, 3745–3752. 181 A. Cao and C. Zhang, Anal. Chem., 2012, 84, 6199–6205.-
local.type.refereedNon-Refereed-
local.type.specifiedPhd thesis-
local.provider.typePdf-
local.uhasselt.internationalno-
item.accessRightsEmbargoed Access-
item.embargoEndDate2029-10-18-
item.fulltextWith Fulltext-
item.contributorMUELLER, Brittany-
item.fullcitationMUELLER, Brittany (2024) DNA Nanotechnology: The Development of Multi-Functional Hybridization Sensors.-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Digital version PhD with cover- Brittany MUELLER.pdf
  Until 2029-10-18
6.61 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.