Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44689
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGiraldo, Diana L.-
dc.contributor.authorKHAN, Hamza-
dc.contributor.authorPineda, Gustavo-
dc.contributor.authorLiang, Zhihua-
dc.contributor.authorLozano-Castillo, Alfonso-
dc.contributor.authorVAN WIJMEERSCH, Bart-
dc.contributor.authorWoodruff, Henry C.-
dc.contributor.authorLambin, Philippe-
dc.contributor.authorRomero, Eduardo-
dc.contributor.authorPEETERS, Liesbet-
dc.contributor.authorSijbers, Jan-
dc.date.accessioned2024-11-25T07:43:06Z-
dc.date.available2024-11-25T07:43:06Z-
dc.date.issued2024-
dc.date.submitted2024-11-21T11:47:30Z-
dc.identifier.citationFrontiers in Neuroscience, 18 (Art N° 1473132)-
dc.identifier.urihttp://hdl.handle.net/1942/44689-
dc.description.abstractIntroduction Magnetic resonance imaging (MRI) is crucial for diagnosing and monitoring of multiple sclerosis (MS) as it is used to assess lesions in the brain and spinal cord. However, in real-world clinical settings, MRI scans are often acquired with thick slices, limiting their utility for automated quantitative analyses. This work presents a single-image super-resolution (SR) reconstruction framework that leverages SR convolutional neural networks (CNN) to enhance the through-plane resolution of structural MRI in people with MS (PwMS).Methods Our strategy involves the supervised fine-tuning of CNN architectures, guided by a content loss function that promotes perceptual quality, as well as reconstruction accuracy, to recover high-level image features.Results Extensive evaluation with MRI data of PwMS shows that our SR strategy leads to more accurate MRI reconstructions than competing methods. Furthermore, it improves lesion segmentation on low-resolution MRI, approaching the performance achievable with high-resolution images.Discussion Results demonstrate the potential of our SR framework to facilitate the use of low-resolution retrospective MRI from real-world clinical settings to investigate quantitative image-based biomarkers of MS.-
dc.description.sponsorshipFunding The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This research received funding from the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” program and the Fund for Scientific Research Flanders (FWO under grant nr G096324N). Acknowledgments We gratefully acknowledge the collaboration of the Department of Radiology and the Multiple Sclerosis Center (https://www.hun.edu.co/CEMHUN) of Hospital Universitario Nacional de Colombia in the construction of the HUN dataset. The MSSEG1 and MSSEG2 datasets were made available by The Observatoire Français de la Sclérose en Plaques (OFSEP), who was supported by a grant provided by the French State and handled by the Agence Nationale de la Recherche, within the framework of the Investments for the Future program, under the reference ANR-10-COHO-002, by the Eugéne Devic EDMUS Foundation against multiple sclerosis and by the ARSEP Foundation.-
dc.language.isoen-
dc.publisherFRONTIERS MEDIA SA-
dc.rights2024 Giraldo, Khan, Pineda, Liang, Lozano-Castillo, Van Wijmeersch, Woodru, Lambin, Romero, Peeters and Sijbers. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms-
dc.subject.othersuper-resolution-
dc.subject.otherMRImultiple sclerosis-
dc.subject.otherlesion segmentation-
dc.subject.otherCNN-
dc.subject.otherfine-tuning-
dc.subject.otherdeep learning-
dc.subject.otherperceptual loss-
dc.titlePerceptual super-resolution in multiple sclerosis MRI-
dc.typeJournal Contribution-
dc.identifier.volume18-
local.format.pages15-
local.bibliographicCitation.jcatA1-
dc.description.notesGiraldo, DL (corresponding author), Univ Antwerp, Imec Vis Lab, Antwerp, Belgium.; Giraldo, DL (corresponding author), Univ Antwerp, NEURO Res Ctr Excellence, Antwerp, Belgium.; Giraldo, DL (corresponding author), Univ Nacl Colombia, Comp Imaging & Med Applicat Lab CIM Lab, Bogota, Colombia.-
dc.description.notesdiana.giraldofranco@uantwerpen.be-
local.publisher.placeAVENUE DU TRIBUNAL FEDERAL 34, LAUSANNE, CH-1015, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr1473132-
dc.identifier.doi10.3389/fnins.2024.1473132-
dc.identifier.pmid39502711-
dc.identifier.isi001348431000001-
local.provider.typewosris-
local.description.affiliation[Giraldo, Diana L.; Liang, Zhihua; Sijbers, Jan] Univ Antwerp, Imec Vis Lab, Antwerp, Belgium.-
local.description.affiliation[Giraldo, Diana L.; Liang, Zhihua; Sijbers, Jan] Univ Antwerp, NEURO Res Ctr Excellence, Antwerp, Belgium.-
local.description.affiliation[Giraldo, Diana L.; Pineda, Gustavo; Romero, Eduardo] Univ Nacl Colombia, Comp Imaging & Med Applicat Lab CIM Lab, Bogota, Colombia.-
local.description.affiliation[Khan, Hamza; Peeters, Liesbet M.] Hasselt Univ, Univ MS Ctr, Biomed Res Inst, Hasselt, Belgium.-
local.description.affiliation[Khan, Hamza; Peeters, Liesbet M.] Hasselt Univ, Data Sci Inst DSI, Hasselt, Belgium.-
local.description.affiliation[Khan, Hamza; Woodruff, Henry C.; Lambin, Philippe] Maastricht Univ, GROW Res Inst Oncol & Reprod, Dept Precis Med, D Lab, Maastricht, Netherlands.-
local.description.affiliation[Lozano-Castillo, Alfonso] Univ Nacl Colombia, Hosp Univ Nacl, Dept Diagnost Imaging, Bogota, Colombia.-
local.description.affiliation[Van Wijmeersch, Bart] Noorderhart, Revalidatie Multiple Sclerose, Pelt, Belgium.-
local.description.affiliation[Woodruff, Henry C.; Lambin, Philippe] Maastricht Univ, GROW Res Inst Oncol & Reprod, Dept Radiol & Nucl Imaging, Med Ctr, Maastricht, Netherlands.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorGiraldo, Diana L.-
item.contributorKHAN, Hamza-
item.contributorPineda, Gustavo-
item.contributorLiang, Zhihua-
item.contributorLozano-Castillo, Alfonso-
item.contributorVAN WIJMEERSCH, Bart-
item.contributorWoodruff, Henry C.-
item.contributorLambin, Philippe-
item.contributorRomero, Eduardo-
item.contributorPEETERS, Liesbet-
item.contributorSijbers, Jan-
item.fullcitationGiraldo, Diana L.; KHAN, Hamza; Pineda, Gustavo; Liang, Zhihua; Lozano-Castillo, Alfonso; VAN WIJMEERSCH, Bart; Woodruff, Henry C.; Lambin, Philippe; Romero, Eduardo; PEETERS, Liesbet & Sijbers, Jan (2024) Perceptual super-resolution in multiple sclerosis MRI. In: Frontiers in Neuroscience, 18 (Art N° 1473132).-
item.accessRightsOpen Access-
crisitem.journal.eissn1662-453X-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
fnins-1-1473132.pdfPublished version3.49 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.