Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44762
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhurana, Divyansh Anil-
dc.contributor.authorPlankensteiner, Nina-
dc.contributor.authorVERMANG, Bart-
dc.contributor.authorVereecken, Philippe M.-
dc.date.accessioned2024-12-05T12:37:45Z-
dc.date.available2024-12-05T12:37:45Z-
dc.date.issued2024-
dc.date.submitted2024-12-04T15:08:13Z-
dc.identifier.citationAngewandte Chemie (International edition),-
dc.identifier.issn1433-7851-
dc.identifier.urihttp://hdl.handle.net/1942/44762-
dc.description.abstractKnowing the exact location of the semiconductor band-edges is key for mechanistic insights into their use for water and CO2 photo/electrocatalysis. In this regard, a reliable strategy for nano-semiconductors did not exist yet. We demonstrate the use of reversible redox probes on nano-semiconductor electrodes to determine their band-edge locations in aqueous solutions. Rectifying current-potential (i-U) characteristics with the high work function (i.e. more positive formal potential) Fe(CN)6 3-/Fe(CN)6 4- redox couple yielded the exact flatband potential at various pH whereas the reversible i-U characteristics with the low work function (i.e. more negative formal potential) Ru(NH3)6 3+/Ru(NH3)6 2+ redox couple provided the conduction band-edge location and dopant concentration for a 30 nm thin-film n-TiO2. The methodology can be extended to other nano-semiconductors and serves as an alternative to and goes beyond the capabilities of the Mott-Schottky procedure for bulk semiconductor electrodes.-
dc.description.sponsorshipThe authors acknowledge funding from VLAIO (Flanders Innovation and Entrepreneurship) under the Flanders Industry Innovation Moonshot program for the SYN-CAT (HBC.2020.2614) project.-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.rights2024 Wiley-VCH-
dc.subject.otherelectrochemistry-
dc.subject.otherenergy band diagram-
dc.subject.othernano-titanium dioxide-
dc.subject.otherredox probes-
dc.subject.othersemiconductors-
dc.titleReversible Redox Probes to Determine Band-Edge Locations and Dopant Concentrations of Nano-TiO2 Thin-Films: Settling the Mott-Schottky Conundrum-
dc.typeJournal Contribution-
local.bibliographicCitation.jcatA1-
local.publisher.placePOSTFACH 101161, 69451 WEINHEIM, GERMANY-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
dc.identifier.doi10.1002/anie.202415857-
dc.identifier.pmid39504260-
dc.identifier.isiWOS:001357989100001-
dc.contributor.orcidVermang, Bart/0000-0003-2669-2087; Khurana, Divyansh/0000-0003-0099-2313-
dc.identifier.eissn1521-3773-
dc.identifier.eissn1521-3773-
local.provider.typewosris-
local.uhasselt.internationalno-
item.contributorKhurana, Divyansh Anil-
item.contributorPlankensteiner, Nina-
item.contributorVERMANG, Bart-
item.contributorVereecken, Philippe M.-
item.fullcitationKhurana, Divyansh Anil; Plankensteiner, Nina; VERMANG, Bart & Vereecken, Philippe M. (2024) Reversible Redox Probes to Determine Band-Edge Locations and Dopant Concentrations of Nano-TiO2 Thin-Films: Settling the Mott-Schottky Conundrum. In: Angewandte Chemie (International edition),.-
item.fulltextWith Fulltext-
item.accessRightsRestricted Access-
crisitem.journal.issn1433-7851-
crisitem.journal.eissn1521-3773-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.