Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44820
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAHADZADEH, Shabnam-
dc.contributor.authorde la Fuente, Beatriz-
dc.contributor.authorHAMED, Hamid-
dc.contributor.authorBRAMMERTZ, Guy-
dc.contributor.authorHauffman, Tom-
dc.contributor.authorCambre, Sofie-
dc.contributor.authorDEFERME, Wim-
dc.contributor.authorSHANIVARASANTHE NITHYANANDA KUMAR, Rachith-
dc.date.accessioned2024-12-10T07:52:24Z-
dc.date.available2024-12-10T07:52:24Z-
dc.date.issued2024-
dc.date.submitted2024-12-04T14:23:42Z-
dc.identifier.citationACS Applied Materials & Interfaces, 16 (47) , p. 65687 -65701-
dc.identifier.urihttp://hdl.handle.net/1942/44820-
dc.description.abstractInterface engineering is the key to optimizing optoelectronic device performance, addressing challenges like reducing potential barriers, passivating interface traps, and controlling recombination of charges. Metal fluorides such as lithium fluoride are employed in interface modification within organic devices due to their strong dipole characteristics but carry health risks, high processing costs, and minimal impact on interface traps in organic electronics. Hence, this study investigates alternative metal chloride (MC) nanocrystals (sodium, cesium, rubidium, and potassium chlorides) that exhibit a strong dipole moment and are readily processable with the aim of reducing the influence of interface traps. Interfacial properties are assessed via various techniques, including electron paramagnetic resonance, X-ray/ultraviolet photoelectron spectroscopy, capacitance-voltage measurements, and density functional theory calculations. In organic light-emitting diodes (OLEDs), the influence of MC on charge transfer, trap density, and light emission properties is evaluated. MCs in ZnO:PEIE nanocomposites (NCs) show improved charge transport, accelerated trapping/detrapping in ZnO:PEIE NCs, and a 50% reduction in active traps in NaCl-based devices versus the reference without MCs. RbCl-, CsCl-, and NaCl-based OLEDs exhibit substantial reductions in the potential barrier between the electron injection layer and the metal contact (Al) from 4.43 to 2.93, 3.02, and 4 eV, respectively, accompanied by enhancements of 35, 27, and 25% in electroluminescence intensity.-
dc.description.sponsorshipFunding The authors would like to thank the fund for scientific research Flanders (FWO) for providing S.A. with a SB PhD grant with grant numbers 1SA4523N and 1SA4525N and BOF funding from UHasselt under grant number BOF22INCENT09 for the present work. S.C. thanks the FWO for providing infrastructure funding for the EPR instrumentation (I004920N). The XPS used in this work has been funded by the Research Foundation Flanders under grant number I00620N. ACKNOWLEDGMENTS The authors thank Prof. Dr. Anitha Ethirajan at the Institute for Materials Research (imo-imomec), UHasselt, Belgium, and Prof. Frank Renner for their support of the AFM measurements and Lennert Purnal and Dieter Reenaers at the Institute for Materials Research (imo-imomec), UHasselt, Belgium, for their support on measurement setup and software. The authors also thank scientific research�Flanders (FWO) and BOF fundings for their support.-
dc.language.isoen-
dc.publisherAMER CHEMICAL SOC-
dc.rights2024 The Authors. Published by American Chemical Society. This article is licensed under CC-BY-NC-ND 4.0-
dc.subject.otherinterfacial engineering-
dc.subject.othermetal chlorides-
dc.subject.otherorganicelectronics-
dc.subject.otherelectron paramagnetic resonance spectroscopy-
dc.subject.otherinterface dipoles-
dc.subject.otherphotoelectron spectroscopy-
dc.subject.otherDFT calculations-
dc.titleInterfacial Metal Chlorides as a Tool to Enhance Charge Carrier Dynamics, Electroluminescence, and Overall Efficiency of Organic Optoelectronic Devices-
dc.typeJournal Contribution-
dc.identifier.epage65701-
dc.identifier.issue47-
dc.identifier.spage65687-
dc.identifier.volume16-
local.format.pages15-
local.bibliographicCitation.jcatA1-
local.publisher.place1155 16TH ST, NW, WASHINGTON, DC 20036-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1021/acsami.4c16558-
dc.identifier.pmid39547657-
dc.identifier.isi001356531000001-
dc.contributor.orcidde la Fuente, Beatriz/0000-0001-9045-3481; Ahadzadeh,-
dc.contributor.orcidShabnam/0000-0002-4863-530X; Deferme, Wim/0000-0002-8982-959X; Cambre,-
dc.contributor.orcidSofie/0000-0001-7471-7678; shanivarasanthe nithyananda kumar,-
dc.contributor.orcidRachith/0000-0003-1453-4495-
local.provider.typewosris-
local.uhasselt.internationalno-
item.contributorAHADZADEH, Shabnam-
item.contributorde la Fuente, Beatriz-
item.contributorHAMED, Hamid-
item.contributorBRAMMERTZ, Guy-
item.contributorHauffman, Tom-
item.contributorCambre, Sofie-
item.contributorDEFERME, Wim-
item.contributorSHANIVARASANTHE NITHYANANDA KUMAR, Rachith-
item.fullcitationAHADZADEH, Shabnam; de la Fuente, Beatriz; HAMED, Hamid; BRAMMERTZ, Guy; Hauffman, Tom; Cambre, Sofie; DEFERME, Wim & SHANIVARASANTHE NITHYANANDA KUMAR, Rachith (2024) Interfacial Metal Chlorides as a Tool to Enhance Charge Carrier Dynamics, Electroluminescence, and Overall Efficiency of Organic Optoelectronic Devices. In: ACS Applied Materials & Interfaces, 16 (47) , p. 65687 -65701.-
item.fulltextWith Fulltext-
item.accessRightsOpen Access-
crisitem.journal.issn1944-8244-
crisitem.journal.eissn1944-8252-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.