Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44842
Title: Optimisation of artefact detection in photoplethysmography heart rate data: influence of different classifiers in machine learning models
Authors: Vermunicht, P.
Buyck, C.
Makayed, K.
Herman, S.
Giraldo, J. S. Piedrahita
Laukens, K.
KNAEPEN, Lieselotte 
Naessens, S.
Hens, W.
Van Craenenbroeck, E.
DESTEGHE, Lien 
HEIDBUCHEL, Hein 
Issue Date: 2024
Publisher: OXFORD UNIV PRESS
Source: European heart journal, 45 (S1) (Art N° ehae6663533)
Abstract: Background: Heart rate (HR) tracking by wrist-worn devices using photoplethysmography (PPG) could assist in continuously following up physical activity. However, the accuracy can be impacted by (motion) artefacts. Machine learning models could help to recognise artefacts in PPG-based HR data. The choice of classifier in these machine learning models is a determing factor for task performance of the model.
Notes: Vermunicht, P (corresponding author), Univ Antwerp, Res Grp Cardiovasc Dis, Antwerp, Belgium.
paulien.vermunicht@uantwerpen.be
Document URI: http://hdl.handle.net/1942/44842
ISSN: 0195-668X
e-ISSN: 1522-9645
DOI: 10.1093/eurheartj/ehae666.3533
ISI #: 001359718000023
Category: M
Type: Journal Contribution
Appears in Collections:Research publications

Files in This Item:
File Description SizeFormat 
ehae666-9 480..481.pdfPublished version323.29 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.