Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/44848
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | PHAM, Hoàng Son | - |
dc.contributor.author | NEYENS, Evy | - |
dc.contributor.author | ALI ELDIN, Amr | - |
dc.date.accessioned | 2024-12-16T09:16:04Z | - |
dc.date.available | 2024-12-16T09:16:04Z | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-12-12T15:38:39Z | - |
dc.identifier.citation | Arai, K. (Ed.). Intelligent systems and applications, Vol 2, Intellisys 2024, SPRINGER INTERNATIONAL PUBLISHING AG, p. 348 -359 | - |
dc.identifier.isbn | 978-3-031-66427-4; 978-3-031-66428-1 | - |
dc.identifier.issn | 2367-3370 | - |
dc.identifier.uri | http://hdl.handle.net/1942/44848 | - |
dc.description.sponsorship | The funding sources obtained from project metadata were in string format. To convert them from categorical to numerical data, we utilized a label encoding technique, assigning each funding source a unique integer number. | - |
dc.language.iso | en | - |
dc.publisher | SPRINGER INTERNATIONAL PUBLISHING AG | - |
dc.relation.ispartofseries | Lecture Notes in Networks and Systems | - |
dc.rights | The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 | - |
dc.subject.other | Open science | - |
dc.subject.other | Open access | - |
dc.subject.other | Indicator development | - |
dc.subject.other | Regression model | - |
dc.title | A Machine Learning Approach to Predicting Open Access Support in Research Projects | - |
dc.type | Proceedings Paper | - |
local.bibliographicCitation.authors | Arai, K. | - |
local.bibliographicCitation.conferencedate | 2024, September 05-06 | - |
local.bibliographicCitation.conferencename | Intelligent Systems Conference | - |
local.bibliographicCitation.conferenceplace | Amsterdam, NETHERLANDS | - |
dc.identifier.epage | 359 | - |
dc.identifier.spage | 348 | - |
dc.identifier.volume | 1066 | - |
local.format.pages | 12 | - |
local.bibliographicCitation.jcat | C1 | - |
local.publisher.place | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND | - |
local.type.refereed | Refereed | - |
local.type.specified | Proceedings Paper | - |
dc.identifier.doi | 10.1007/978-3-031-66428-1_21 | - |
dc.identifier.isi | 001313755900021 | - |
dc.identifier.eissn | 2367-3389 | - |
local.provider.type | wosris | - |
local.bibliographicCitation.btitle | Intelligent systems and applications, Vol 2, Intellisys 2024 | - |
local.uhasselt.international | no | - |
item.contributor | PHAM, Hoàng Son | - |
item.contributor | NEYENS, Evy | - |
item.contributor | ALI ELDIN, Amr | - |
item.fullcitation | PHAM, Hoàng Son; NEYENS, Evy & ALI ELDIN, Amr (2024) A Machine Learning Approach to Predicting Open Access Support in Research Projects. In: Arai, K. (Ed.). Intelligent systems and applications, Vol 2, Intellisys 2024, SPRINGER INTERNATIONAL PUBLISHING AG, p. 348 -359. | - |
item.embargoEndDate | 2025-07-31 | - |
item.fulltext | With Fulltext | - |
item.accessRights | Embargoed Access | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Intelligent Systems and Applications.pdf Restricted Access | Published version | 1.5 MB | Adobe PDF | View/Open Request a copy |
IDR_open_access_prediction_intelliSys2024.pdf Until 2025-07-31 | Peer-reviewed author version | 461.24 kB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.