Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44917
Full metadata record
DC FieldValueLanguage
dc.contributor.authorXia, Qiqiang-
dc.contributor.authorCHEN, Junhong-
dc.contributor.authorLi, Tianxiao-
dc.contributor.authorHuang, Yiheng-
dc.contributor.authorAsim, Muhammad-
dc.contributor.authorMICHIELS, Nick-
dc.contributor.authorLiu, Wenyin-
dc.date.accessioned2024-12-23T12:00:43Z-
dc.date.available2024-12-23T12:00:43Z-
dc.date.issued2024-
dc.date.submitted2024-11-27T11:45:29Z-
dc.identifier.citationLecture Notes in Computer Science, 15283 , p. 321 -332-
dc.identifier.isbn9789819601219-
dc.identifier.isbn9789819601226-
dc.identifier.urihttp://hdl.handle.net/1942/44917-
dc.description.abstractLearning 3D-aware generators from 2D image collections has attracted significant attention in the field of generative modeling. However, there are several challenges in generating high-resolution multi-view consistent images, e.g., 2D CNN-based approaches leverage upsampling layers to generate high-resolution images, easily resulting in inconsistencies across multi-view images; methods that generate images based on NeRF require tremendous memory space and a long time to converge. To this end, we propose a novel 3D-aware generative method named 3D-HRFC to generate high-resolution consistent images with faster convergence. Specifically, we first propose a depth fusion based super-resolution module that integrates the depth maps into the low-resolution images in order to generate consistent multi-view images. And then a skip super-resolution module is devised to enhance the generation of the high-resolution images. To generate high-resolution consistent images and accelerate the model convergence, we devise a composite loss function that consists of adversarial loss, super-resolution loss, and content consistency. Extensive experiments conducted on FFHQ and AFHQ-v2 Cats datasets illustrate that our proposed method can generate high-quality 3D-consistent images.-
dc.language.isoen-
dc.publisherSpringer-
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.title3D-HRFC: 3D-Aware Image Generation at High Resolution with Faster Convergence-
dc.typeJournal Contribution-
local.bibliographicCitation.authorsHadfi, Rafik-
local.bibliographicCitation.authorsAnthony, Patricia-
local.bibliographicCitation.authorsSharma, Alok-
local.bibliographicCitation.authorsIto, Takayuki-
local.bibliographicCitation.authorsBai, Quan-
local.bibliographicCitation.conferencedate2024, November 18-24-
local.bibliographicCitation.conferencenameThe Pacific Rim International Conference on Artificial Intelligence (PRICAI)-
local.bibliographicCitation.conferenceplaceKyoto, Japan-
dc.identifier.epage332-
dc.identifier.spage321-
dc.identifier.volume15283-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.relation.ispartofseriesnr15283-
dc.identifier.doi10.1007/978-981-96-0122-6_28-
local.provider.typeCrossRef-
local.uhasselt.internationalyes-
item.contributorXia, Qiqiang-
item.contributorCHEN, Junhong-
item.contributorLi, Tianxiao-
item.contributorHuang, Yiheng-
item.contributorAsim, Muhammad-
item.contributorMICHIELS, Nick-
item.contributorLiu, Wenyin-
item.fullcitationXia, Qiqiang; CHEN, Junhong; Li, Tianxiao; Huang, Yiheng; Asim, Muhammad; MICHIELS, Nick & Liu, Wenyin (2024) 3D-HRFC: 3D-Aware Image Generation at High Resolution with Faster Convergence. In: Lecture Notes in Computer Science, 15283 , p. 321 -332.-
item.embargoEndDate2025-11-12-
item.fulltextWith Fulltext-
item.accessRightsEmbargoed Access-
crisitem.journal.issn0302-9743-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
3D-HRFC.pdf
  Until 2025-11-12
Peer-reviewed author version15.53 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.