Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/44917
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xia, Qiqiang | - |
dc.contributor.author | CHEN, Junhong | - |
dc.contributor.author | Li, Tianxiao | - |
dc.contributor.author | Huang, Yiheng | - |
dc.contributor.author | Asim, Muhammad | - |
dc.contributor.author | MICHIELS, Nick | - |
dc.contributor.author | Liu, Wenyin | - |
dc.date.accessioned | 2024-12-23T12:00:43Z | - |
dc.date.available | 2024-12-23T12:00:43Z | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-11-27T11:45:29Z | - |
dc.identifier.citation | Lecture Notes in Computer Science, 15283 , p. 321 -332 | - |
dc.identifier.isbn | 9789819601219 | - |
dc.identifier.isbn | 9789819601226 | - |
dc.identifier.uri | http://hdl.handle.net/1942/44917 | - |
dc.description.abstract | Learning 3D-aware generators from 2D image collections has attracted significant attention in the field of generative modeling. However, there are several challenges in generating high-resolution multi-view consistent images, e.g., 2D CNN-based approaches leverage upsampling layers to generate high-resolution images, easily resulting in inconsistencies across multi-view images; methods that generate images based on NeRF require tremendous memory space and a long time to converge. To this end, we propose a novel 3D-aware generative method named 3D-HRFC to generate high-resolution consistent images with faster convergence. Specifically, we first propose a depth fusion based super-resolution module that integrates the depth maps into the low-resolution images in order to generate consistent multi-view images. And then a skip super-resolution module is devised to enhance the generation of the high-resolution images. To generate high-resolution consistent images and accelerate the model convergence, we devise a composite loss function that consists of adversarial loss, super-resolution loss, and content consistency. Extensive experiments conducted on FFHQ and AFHQ-v2 Cats datasets illustrate that our proposed method can generate high-quality 3D-consistent images. | - |
dc.language.iso | en | - |
dc.publisher | Springer | - |
dc.relation.ispartofseries | Lecture Notes in Computer Science | - |
dc.title | 3D-HRFC: 3D-Aware Image Generation at High Resolution with Faster Convergence | - |
dc.type | Journal Contribution | - |
local.bibliographicCitation.authors | Hadfi, Rafik | - |
local.bibliographicCitation.authors | Anthony, Patricia | - |
local.bibliographicCitation.authors | Sharma, Alok | - |
local.bibliographicCitation.authors | Ito, Takayuki | - |
local.bibliographicCitation.authors | Bai, Quan | - |
local.bibliographicCitation.conferencedate | 2024, November 18-24 | - |
local.bibliographicCitation.conferencename | The Pacific Rim International Conference on Artificial Intelligence (PRICAI) | - |
local.bibliographicCitation.conferenceplace | Kyoto, Japan | - |
dc.identifier.epage | 332 | - |
dc.identifier.spage | 321 | - |
dc.identifier.volume | 15283 | - |
local.bibliographicCitation.jcat | A1 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.relation.ispartofseriesnr | 15283 | - |
dc.identifier.doi | 10.1007/978-981-96-0122-6_28 | - |
local.provider.type | CrossRef | - |
local.uhasselt.international | yes | - |
item.contributor | Xia, Qiqiang | - |
item.contributor | CHEN, Junhong | - |
item.contributor | Li, Tianxiao | - |
item.contributor | Huang, Yiheng | - |
item.contributor | Asim, Muhammad | - |
item.contributor | MICHIELS, Nick | - |
item.contributor | Liu, Wenyin | - |
item.fullcitation | Xia, Qiqiang; CHEN, Junhong; Li, Tianxiao; Huang, Yiheng; Asim, Muhammad; MICHIELS, Nick & Liu, Wenyin (2024) 3D-HRFC: 3D-Aware Image Generation at High Resolution with Faster Convergence. In: Lecture Notes in Computer Science, 15283 , p. 321 -332. | - |
item.embargoEndDate | 2025-11-12 | - |
item.fulltext | With Fulltext | - |
item.accessRights | Embargoed Access | - |
crisitem.journal.issn | 0302-9743 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
3D-HRFC.pdf Until 2025-11-12 | Peer-reviewed author version | 15.53 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.