Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44938
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDaalen, Florian van-
dc.contributor.authorHenriksen, Margrethe Hostgaard Bang-
dc.contributor.authorHansen, Torben Frostrup-
dc.contributor.authorJensen, Lars Henrik-
dc.contributor.authorBrasen, Claus Lohman-
dc.contributor.authorHilberg, Ole-
dc.contributor.authorAndersen, Martin Ask Klausholt-
dc.contributor.authorHumerfelt, Elise-
dc.contributor.authorWee, Leonard-
dc.contributor.authorBERMEJO DELGADO, Inigo-
dc.date.accessioned2025-01-06T09:51:44Z-
dc.date.available2025-01-06T09:51:44Z-
dc.date.issued2024-
dc.date.submitted2025-01-03T13:19:51Z-
dc.identifier.citationCancers, 16 (23) (Art N° 3989)-
dc.identifier.urihttp://hdl.handle.net/1942/44938-
dc.description.abstractBackground/Objectives: Lung cancer (LC) is the leading cause of cancer mortality, making early diagnosis essential. While LC screening trials are underway globally, optimal prediction models and inclusion criteria are still lacking. This study aimed to develop and evaluate Bayesian Network (BN) models for LC risk prediction using a decade of data from Denmark. The primary goal was to assess BN performance on datasets varying in size and completeness, simulate real-world screening scenarios, and identify the most valuable data sources for LC screening. Methods: The study included 38,944 patients evaluated for LC, with 11,284 (29%) diagnosed. Data on comorbidities, medications, and general practice were available for the entire cohort, while laboratory results, smoking habits, and other variables were only available for subsets. The cohort was divided into four subsets based on data availability, and BNs were trained and validated across these subsets using cross-validation and external validation. To determine the optimal combination of variables, all possible data combinations were evaluated on the samples that contained all the variables (n = 5587). Results: A model trained on the small, complete dataset (AUC 0.78) performed similarly on a larger dataset with 21% missing data (AUC 0.78). Performance dropped when 39% of data were missing (AUC 0.67), resulting in informative variables missing completely in the dataset. Laboratory results and smoking data were the most informative, significantly outperforming models based only on age and smoking status (AUC 0.70). Conclusions: BN models demonstrated moderate to strong predictive performance, even with incomplete data, highlighting the potential value of incorporating laboratory results in LC screening programs.-
dc.description.sponsorshipThe project was funded by The Region of Southern Denmark, The University of Southern Denmark, The Dagmar Marshall Foundation, the Lilly and Herbert Hansen Foundation, the Hede Nielsen Family Foundation, The Beckett Foundation, and The Danish National Research Center for Lung Cancer, Danish Cancer Society (grant no. R198-A14299). The funding sources did not participate in the data collection, analyses, or writing of the manuscript-
dc.language.isoen-
dc.publisherMDPI-
dc.rights2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).-
dc.subject.otherlung cancer-
dc.subject.otherbayesian networks-
dc.subject.otherprediction models-
dc.subject.otherscreening-
dc.subject.otherearly detection-
dc.subject.othermissing data-
dc.subject.otherrisk stratification-
dc.titleA Bayesian Network Approach to Lung Cancer Screening: Assessing the Impact of Data Quantity, Quality, and the Combination of Data from Danish Electronic Health Records-
dc.typeJournal Contribution-
dc.identifier.issue23-
dc.identifier.volume16-
local.format.pages16-
local.bibliographicCitation.jcatA1-
dc.description.notesHenriksen, MHB (corresponding author), Vejle Univ Hosp, Dept Oncol, DK-7100 Vejle, Denmark.; Henriksen, MHB (corresponding author), Univ Southern Denmark, Inst Reg Hlth Res, DK-5230 Odense, Denmark.-
dc.description.notesflorian.vandaalen@maastro.nl;-
dc.description.notesmargrethe.hostgaard.bang.henriksen@rsyd.dk; torben.hansen@rsyd.dk;-
dc.description.noteslars.henrik.jensen@rsyd.dk; claus.lohman.brasen@rsyd.dk;-
dc.description.notesole.hilberg@rsyd.dk-
local.publisher.placeST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr3989-
dc.identifier.doi10.3390/cancers16233989-
dc.identifier.pmid39682176-
dc.identifier.isi001376152400001-
local.provider.typewosris-
local.description.affiliation[Daalen, Florian van; Wee, Leonard; Bermejo, Inigo] Maastricht Univ, GROW Sch Oncol & Reprod, Dept Radiat Oncol MAASTRO, Med Ctr, NL-6229 HX Maastricht, Netherlands.-
local.description.affiliation[Henriksen, Margrethe Hostgaard Bang; Hansen, Torben Frostrup; Jensen, Lars Henrik] Vejle Univ Hosp, Dept Oncol, DK-7100 Vejle, Denmark.-
local.description.affiliation[Henriksen, Margrethe Hostgaard Bang; Hansen, Torben Frostrup; Brasen, Claus Lohman; Hilberg, Ole] Univ Southern Denmark, Inst Reg Hlth Res, DK-5230 Odense, Denmark.-
local.description.affiliation[Brasen, Claus Lohman] Vejle Univ Hosp, Dept Biochem & Immunol, DK-7100 Vejle, Denmark.-
local.description.affiliation[Hilberg, Ole] Vejle Univ Hosp, Dept Internal Med, DK-7100 Vejle, Denmark.-
local.description.affiliation[Andersen, Martin Ask Klausholt; Humerfelt, Elise] Univ Southern Denmark, Fac Hlth Sci, DK-5230 Odense, Denmark.-
local.description.affiliation[Bermejo, Inigo] Hasselt Univ, Data Sci Inst DSI, B-3500 Hasselt, Belgium.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorDaalen, Florian van-
item.contributorHenriksen, Margrethe Hostgaard Bang-
item.contributorHansen, Torben Frostrup-
item.contributorJensen, Lars Henrik-
item.contributorBrasen, Claus Lohman-
item.contributorHilberg, Ole-
item.contributorAndersen, Martin Ask Klausholt-
item.contributorHumerfelt, Elise-
item.contributorWee, Leonard-
item.contributorBERMEJO DELGADO, Inigo-
item.fullcitationDaalen, Florian van; Henriksen, Margrethe Hostgaard Bang; Hansen, Torben Frostrup; Jensen, Lars Henrik; Brasen, Claus Lohman; Hilberg, Ole; Andersen, Martin Ask Klausholt; Humerfelt, Elise; Wee, Leonard & BERMEJO DELGADO, Inigo (2024) A Bayesian Network Approach to Lung Cancer Screening: Assessing the Impact of Data Quantity, Quality, and the Combination of Data from Danish Electronic Health Records. In: Cancers, 16 (23) (Art N° 3989).-
item.accessRightsOpen Access-
crisitem.journal.eissn2072-6694-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
A Bayesian Network Approach .pdfPublished version2.07 MBAdobe PDFView/Open
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.