Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/44980
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVANHERLE, Bram-
dc.contributor.authorPippi, Vittorio-
dc.contributor.authorCascianelli, Silvia-
dc.contributor.authorMICHIELS, Nick-
dc.contributor.authorVAN REETH, Frank-
dc.contributor.authorCucchiara, Rita-
dc.date.accessioned2025-01-07T10:11:12Z-
dc.date.available2025-01-07T10:11:12Z-
dc.date.issued2024-
dc.date.submitted2024-12-13T07:58:35Z-
dc.identifier.citationIeee Transactions on Pattern Analysis and Machine Intelligence,-
dc.identifier.issn0162-8828-
dc.identifier.urihttp://hdl.handle.net/1942/44980-
dc.description.abstractStyled Handwritten Text Generation (HTG) has received significant attention in recent years, propelled by the success of learning-based solutions employing GANs, Transformers, and, preliminarily, Diffusion Models. Despite this surge in interest, there remains a critical yet understudied aspect – the impact of the input, both visual and textual, on the HTG model training and its subsequent influence on performance. This work extends the VATr [1] Styled-HTG approach by addressing the pre-processing and training issues that it faces, which are common to many HTG models. In particular, we propose generally applicable strategies for input preparation and training regularization that allow the model to achieve better performance and generalization capabilities. Moreover, in this work, we go beyond performance optimization and address a significant hurdle in HTG research – the lack of a standardized evaluation protocol. In particular, we propose a standardization of the evaluation protocol for HTG and conduct a comprehensive benchmarking of existing approaches. By doing so, we aim to establish a foundation for fair and meaningful comparisons between HTG strategies, fostering progress in the field.-
dc.description.sponsorshipThis work was supported by the “AI for Digital Humanities” project (P. S. n.2018.0390), funded by “Fondazione di Modena” and the PNRR project Italian Strengthening of Esfri RI Resilience funded by the European Union – NextGenerationEU (CUP: B53C22001770006). The internship of Bram Vanherle, during which this research was carried out, was supported by a grant by “Fonds Wetenschappelijk Onderzoek - Vlaanderen (FWO)” (File V421323N). Bram’s PhD is supported by the Special Research Fund (BOF) of Hasselt University (mandate ID: BOF20OWB24).-
dc.language.isoen-
dc.publisher-
dc.rights2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.-
dc.subject.otherHandwritten Text Generation-
dc.subject.otherSynthetic data-
dc.subject.otherHandwritten Text Generation Evaluation.-
dc.titleVATr++: Choose Your Words Wisely for Handwritten Text Generation-
dc.typeJournal Contribution-
dc.identifier.epage948-
dc.identifier.issue2-
dc.identifier.spage934-
dc.identifier.volume47-
local.format.pages15-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1109/TPAMI.2024.3481154-
dc.identifier.isi001395340500017-
dc.identifier.eissn1939-3539-
local.provider.typeCrossRef-
local.uhasselt.internationalyes-
item.contributorVANHERLE, Bram-
item.contributorPippi, Vittorio-
item.contributorCascianelli, Silvia-
item.contributorMICHIELS, Nick-
item.contributorVAN REETH, Frank-
item.contributorCucchiara, Rita-
item.fullcitationVANHERLE, Bram; Pippi, Vittorio; Cascianelli, Silvia; MICHIELS, Nick; VAN REETH, Frank & Cucchiara, Rita (2024) VATr++: Choose Your Words Wisely for Handwritten Text Generation. In: Ieee Transactions on Pattern Analysis and Machine Intelligence,.-
item.embargoEndDate2025-07-10-
item.fulltextWith Fulltext-
item.accessRightsEmbargoed Access-
crisitem.journal.issn0162-8828-
crisitem.journal.eissn1939-3539-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
VATr_Choose_Your_Words_Wisely_for_Handwritten_Text_Generation.pdf
  Until 2025-07-10
Peer-reviewed author version11.26 MBAdobe PDFView/Open    Request a copy
VATr_Choose_Your_Words_Wisely_for_Handwritten_Text_Generation (1).pdf
  Restricted Access
Published version4.32 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.