Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45150
Full metadata record
DC FieldValueLanguage
dc.contributor.authorROJAS GONZALEZ, Sebastian-
dc.contributor.authorBranke, Juergen-
dc.contributor.authorVAN NIEUWENHUYSE, Inneke-
dc.date.accessioned2025-01-23T14:55:28Z-
dc.date.available2025-01-23T14:55:28Z-
dc.date.issued2024-
dc.date.submitted2025-01-15T14:05:34Z-
dc.identifier.citationEuropean journal of operational research,-
dc.identifier.issn0377-2217-
dc.identifier.urihttp://hdl.handle.net/1942/45150-
dc.description.abstractWe consider bi-objective ranking and selection problems, where the goal is to correctly identify the Pareto-optimal solutions among a finite set of candidates for which the objective function values have to be estimated from noisy evaluations. When identifying these solutions, the noise perturbing the observed performance may lead to two types of errors: solutions that are truly Pareto-optimal may appear to be dominated, and solutions that are truly dominated may appear to be Pareto-optimal. We propose a novel Bayesian bi-objective ranking and selection method that sequentially allocates extra samples to competitive solutions, in view of reducing the misclassification errors when identifying the solutions with the best expected performance. The approach uses stochastic kriging to build reliable predictive distributions of the objectives, and exploits this information to decide how to resample. The experiments are designed to evaluate the algorithm on several artificial and practical test problems. The proposed approach is observed to consistently outperform its competitors (a well-known state-of-the-art algorithm and the standard equal allocation method), which may also benefit from the use of stochastic kriging information.-
dc.language.isoen-
dc.publisher-
dc.subject.otherMultiple criteria analysis-
dc.subject.otherMultiobjective simulation optimization-
dc.subject.otherStochastic kriging-
dc.subject.otherMultiobjective ranking and selection-
dc.titleBi-objective ranking and selection using stochastic kriging-
dc.typeJournal Contribution-
dc.identifier.epage614-
dc.identifier.issue2-
dc.identifier.spage599-
dc.identifier.volume322-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.ejor.2024.11.008-
dc.identifier.isi001421588300001-
dc.identifier.eissn1872-6860-
local.provider.typeCrossRef-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorROJAS GONZALEZ, Sebastian-
item.contributorBranke, Juergen-
item.contributorVAN NIEUWENHUYSE, Inneke-
item.fullcitationROJAS GONZALEZ, Sebastian; Branke, Juergen & VAN NIEUWENHUYSE, Inneke (2024) Bi-objective ranking and selection using stochastic kriging. In: European journal of operational research,.-
item.accessRightsOpen Access-
crisitem.journal.issn0377-2217-
crisitem.journal.eissn1872-6860-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
ejor_MORS_final accepted version.pdfPeer-reviewed author version7.33 MBAdobe PDFView/Open
1-s2.0-S0377221724008592-main.pdf
  Restricted Access
Published version3.92 MBAdobe PDFView/Open    Request a copy
1-s2.0-S0377221724008592-main.pdf
  Restricted Access
Published version3.91 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.