Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/45194
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | RUTTEN, Sara | - |
dc.contributor.author | Espinasse, Marina | - |
dc.contributor.author | E CASTRO ROCHA DUARTE, Elisa | - |
dc.contributor.author | NEYENS, Thomas | - |
dc.contributor.author | FAES, Christel | - |
dc.date.accessioned | 2025-01-29T08:31:30Z | - |
dc.date.available | 2025-01-29T08:31:30Z | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-01-21T07:54:14Z | - |
dc.identifier.citation | Spatial and spatio-temporal epidemiology, 52 (Art N° 100709) | - |
dc.identifier.issn | 1877-5845 | - |
dc.identifier.uri | http://hdl.handle.net/1942/45194 | - |
dc.description.abstract | Exposure to air pollution has been proposed as a determinant of COVID-19 dynamics. While the connection between air pollution and COVID-19 has been established for several countries worldwide, few such analyses exist in Belgium. Therefore, we examine this potential association in Belgium, using COVID-19 cases of all 581 municipalities between September 2020 and January 2022. We employ a Bayesian spatio-temporal negative binomial model, allowing for potential non-linear and lagged effects of pollution. Comparing different single-pollutant models, we find that the model providing the best fit to the data contains black carbon. At the median pollution level, a cumulative risk of 1.66 (1.57, 1.74) over 8 weeks is found for this pollutant, compared to the 5% pollution quantile. In addition, the study reveals a remarkable similarity in COVID-19 incidence between adjacent municipalities in Belgium. Our findings suggest paying careful attention to highly air polluted areas when preparing for future pandemics of respiratory diseases. | - |
dc.description.sponsorship | TN gratefully acknowledges funding by the Research Foundation - Flanders, Belgium (grant number G0A4121N) | - |
dc.language.iso | en | - |
dc.publisher | - | |
dc.subject.other | COVID-19 | - |
dc.subject.other | Spatio-temporal model | - |
dc.subject.other | Belgium | - |
dc.subject.other | Bayesian analysis | - |
dc.title | On the lagged non-linear association between air pollution and COVID-19 cases in Belgium | - |
dc.type | Journal Contribution | - |
dc.identifier.spage | 100709 | - |
dc.identifier.volume | 52 | - |
local.bibliographicCitation.jcat | A2 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.artnr | 100709 | - |
dc.identifier.doi | 10.1016/j.sste.2024.100709 | - |
dc.identifier.isi | 001411363400001 | - |
dc.identifier.eissn | 1877-5853 | - |
local.provider.type | CrossRef | - |
local.dataset.url | https://github.com/Rutten-Sara/Bayesian-DLNM-Air-pollution-and-COVID-19-in-Belgium | - |
local.uhasselt.international | yes | - |
item.contributor | RUTTEN, Sara | - |
item.contributor | Espinasse, Marina | - |
item.contributor | E CASTRO ROCHA DUARTE, Elisa | - |
item.contributor | NEYENS, Thomas | - |
item.contributor | FAES, Christel | - |
item.fullcitation | RUTTEN, Sara; Espinasse, Marina; E CASTRO ROCHA DUARTE, Elisa; NEYENS, Thomas & FAES, Christel (2025) On the lagged non-linear association between air pollution and COVID-19 cases in Belgium. In: Spatial and spatio-temporal epidemiology, 52 (Art N° 100709). | - |
item.embargoEndDate | 2025-07-01 | - |
item.fulltext | With Fulltext | - |
item.accessRights | Embargoed Access | - |
crisitem.journal.issn | 1877-5845 | - |
crisitem.journal.eissn | 1877-5853 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Manuscript.pdf Until 2025-07-01 | Peer-reviewed author version | 35.84 MB | Adobe PDF | View/Open Request a copy |
Supplementary.pdf | Supplementary material | 227.03 kB | Adobe PDF | View/Open |
Published_paper.pdf Restricted Access | Published version | 19.29 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.