Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45194
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRUTTEN, Sara-
dc.contributor.authorEspinasse, Marina-
dc.contributor.authorE CASTRO ROCHA DUARTE, Elisa-
dc.contributor.authorNEYENS, Thomas-
dc.contributor.authorFAES, Christel-
dc.date.accessioned2025-01-29T08:31:30Z-
dc.date.available2025-01-29T08:31:30Z-
dc.date.issued2025-
dc.date.submitted2025-01-21T07:54:14Z-
dc.identifier.citationSpatial and spatio-temporal epidemiology, 52 (Art N° 100709)-
dc.identifier.issn1877-5845-
dc.identifier.urihttp://hdl.handle.net/1942/45194-
dc.description.abstractExposure to air pollution has been proposed as a determinant of COVID-19 dynamics. While the connection between air pollution and COVID-19 has been established for several countries worldwide, few such analyses exist in Belgium. Therefore, we examine this potential association in Belgium, using COVID-19 cases of all 581 municipalities between September 2020 and January 2022. We employ a Bayesian spatio-temporal negative binomial model, allowing for potential non-linear and lagged effects of pollution. Comparing different single-pollutant models, we find that the model providing the best fit to the data contains black carbon. At the median pollution level, a cumulative risk of 1.66 (1.57, 1.74) over 8 weeks is found for this pollutant, compared to the 5% pollution quantile. In addition, the study reveals a remarkable similarity in COVID-19 incidence between adjacent municipalities in Belgium. Our findings suggest paying careful attention to highly air polluted areas when preparing for future pandemics of respiratory diseases.-
dc.description.sponsorshipTN gratefully acknowledges funding by the Research Foundation - Flanders, Belgium (grant number G0A4121N)-
dc.language.isoen-
dc.publisher-
dc.subject.otherCOVID-19-
dc.subject.otherSpatio-temporal model-
dc.subject.otherBelgium-
dc.subject.otherBayesian analysis-
dc.titleOn the lagged non-linear association between air pollution and COVID-19 cases in Belgium-
dc.typeJournal Contribution-
dc.identifier.spage100709-
dc.identifier.volume52-
local.bibliographicCitation.jcatA2-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr100709-
dc.identifier.doi10.1016/j.sste.2024.100709-
dc.identifier.isi001411363400001-
dc.identifier.eissn1877-5853-
local.provider.typeCrossRef-
local.dataset.urlhttps://github.com/Rutten-Sara/Bayesian-DLNM-Air-pollution-and-COVID-19-in-Belgium-
local.uhasselt.internationalyes-
item.contributorRUTTEN, Sara-
item.contributorEspinasse, Marina-
item.contributorE CASTRO ROCHA DUARTE, Elisa-
item.contributorNEYENS, Thomas-
item.contributorFAES, Christel-
item.fullcitationRUTTEN, Sara; Espinasse, Marina; E CASTRO ROCHA DUARTE, Elisa; NEYENS, Thomas & FAES, Christel (2025) On the lagged non-linear association between air pollution and COVID-19 cases in Belgium. In: Spatial and spatio-temporal epidemiology, 52 (Art N° 100709).-
item.embargoEndDate2025-07-01-
item.fulltextWith Fulltext-
item.accessRightsEmbargoed Access-
crisitem.journal.issn1877-5845-
crisitem.journal.eissn1877-5853-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Manuscript.pdf
  Until 2025-07-01
Peer-reviewed author version35.84 MBAdobe PDFView/Open    Request a copy
Supplementary.pdfSupplementary material227.03 kBAdobe PDFView/Open
Published_paper.pdf
  Restricted Access
Published version19.29 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.