Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45215
Full metadata record
DC FieldValueLanguage
dc.contributor.authorvan der Meijden, Siri L.-
dc.contributor.authorvan Boekel, Anna M.-
dc.contributor.authorSchinkelshoek, Laurens J.-
dc.contributor.authorvan Goor, Harry-
dc.contributor.authorSteyerberg, Ewout W.-
dc.contributor.authorNelissen, Rob G. H. H.-
dc.contributor.authorMESOTTEN, Dieter-
dc.contributor.authorGeerts, Bart F.-
dc.contributor.authorde Boer, Mark G. J.-
dc.contributor.authorArbous, M. Sesmu-
dc.date.accessioned2025-01-31T07:54:29Z-
dc.date.available2025-01-31T07:54:29Z-
dc.date.issued2025-
dc.date.submitted2025-01-27T15:25:57Z-
dc.identifier.citationThe Lancet regional health. Europe, 49 (Art N° 101163)-
dc.identifier.urihttp://hdl.handle.net/1942/45215-
dc.description.abstractBackground Postoperative infections significantly impact patient outcomes and costs, exacerbated by late diagnoses, yet early reliable predictors are scarce. Existing artificial intelligence (AI) models for postoperative infection prediction often lack external validation or perform poorly in local settings when validated. We aimed to develop locally valid models as part of the PERISCOPE AI system to enable early detection, safer discharge, and more timely treatment of patients. Methods We developed and validated XGBoost models to predict postoperative infections within 7 and 30 days of surgery. Using retrospective pre-operative and intra-operative electronic health record data from 2014 to 2023 across various surgical specialities, the models were developed at Hospital A and validated and updated at Hospitals B and C in the Netherlands and Belgium. Model performance was evaluated before and after updating using the two most recent years of data as temporal validation datasets. Main outcome measures were model discrimination (area under the receiver operating characteristic curve (AUROC)), calibration (slope, intercept, and plots), and clinical utility (decision curve analysis with net benefit). Findings The study included 253,010 surgical procedures with 23,903 infections within 30-days. Discriminative performance, calibration properties, and clinical utility significantly improved after updating. Final AUROCs after updating for Hospitals A, B, and C were 0.82 (95% confidence interval (CI) 0.81-0.83), 0.82 (95% CI 0.81-0.83), and 0.91 (95% CI 0.90-0.91) respectively for 30-day predictions on the temporal validation datasets (2022-2023). Calibration plots demonstrated adequate correspondence between observed outcomes and predicted risk. All local models were deemed clinically useful as the net benefit was higher than default strategies (treat all and treat none) over a wide range of clinically relevant decision thresholds. Interpretation PERISCOPE can accurately predict overall postoperative infections within 7- and 30-days post-surgery. The robust performance implies potential for improving clinical care in diverse clinical target populations. This study supports the need for approaches to local updating of AI models to account for domain shifts in patient populations and data distributions across different clinical settings. Copyright (c) 2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).-
dc.description.sponsorshipThis study was funded by a “REACT EU” grant from “European Regional Development Fund (ERDF)” and “Kansen voor West” with grant number KVW-00351. The funders had no role in study design, data collection, data analysis, interpretation, or manuscript writing. The PERISCOPE group was not funded. The authors would like to thank Kathryn Lake for proofreading the manuscript.-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights2024 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)-
dc.subject.otherPostoperative infection-
dc.subject.otherArtificial intelligence-
dc.subject.otherMulti-centre validation-
dc.subject.otherModel updating-
dc.subject.otherClinical utility-
dc.titleDevelopment and validation of artificial intelligence models for early detection of postoperative infections (PERISCOPE): a multicentre study using electronic health record data-
dc.typeJournal Contribution-
dc.identifier.volume49-
local.format.pages12-
local.bibliographicCitation.jcatA1-
dc.description.notesvan der Meijden, SL (corresponding author), Leiden Univ, Med Ctr, Intens Care Unit, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands.-
dc.description.notesS.L.van_der_Meijden@lumc.nl-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr101163-
dc.identifier.doi10.1016/j.lanepe.2024.101163-
dc.identifier.pmid39720095-
dc.identifier.isi001382577500001-
dc.identifier.eissn-
local.provider.typewosris-
local.description.affiliation[van der Meijden, Siri L.; van Boekel, Anna M.; Arbous, M. Sesmu] Leiden Univ, Med Ctr, Intens Care Unit, Albinusdreef 2, NL-2333 ZA Leiden, Netherlands.-
local.description.affiliation[van der Meijden, Siri L.; Schinkelshoek, Laurens J.; Geerts, Bart F.] Healthplus AI BV, Amsterdam, Netherlands.-
local.description.affiliation[van Goor, Harry] Radboud Univ Nijmegen, Med Ctr, Gen Surg Dept, Nijmegen, Netherlands.-
local.description.affiliation[Steyerberg, Ewout W.] Leiden Univ, Med Ctr, Dept Biomed Data Sci, Leiden, Netherlands.-
local.description.affiliation[Nelissen, Rob G. H. H.] Leiden Univ, Med Ctr, Dept Orthopaed, Leiden, Netherlands.-
local.description.affiliation[Mesotten, Dieter] Ziekenhuis Oost Limburg, Dept Anaesthesiol, Intens Care Med, Genk, Belgium.-
local.description.affiliation[Mesotten, Dieter] UHasselt, Limburg Clin Res Ctr, Fac Med & Life Sci, Diepenbeek, Belgium.-
local.description.affiliation[de Boer, Mark G. J.] Leiden Univ, Med Ctr, Dept Infect Dis, Leiden, Netherlands.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorvan der Meijden, Siri L.-
item.contributorvan Boekel, Anna M.-
item.contributorSchinkelshoek, Laurens J.-
item.contributorvan Goor, Harry-
item.contributorSteyerberg, Ewout W.-
item.contributorNelissen, Rob G. H. H.-
item.contributorMESOTTEN, Dieter-
item.contributorGeerts, Bart F.-
item.contributorde Boer, Mark G. J.-
item.contributorArbous, M. Sesmu-
item.fullcitationvan der Meijden, Siri L.; van Boekel, Anna M.; Schinkelshoek, Laurens J.; van Goor, Harry; Steyerberg, Ewout W.; Nelissen, Rob G. H. H.; MESOTTEN, Dieter; Geerts, Bart F.; de Boer, Mark G. J. & Arbous, M. Sesmu (2025) Development and validation of artificial intelligence models for early detection of postoperative infections (PERISCOPE): a multicentre study using electronic health record data. In: The Lancet regional health. Europe, 49 (Art N° 101163).-
item.accessRightsRestricted Access-
crisitem.journal.issn2666-7762-
crisitem.journal.eissn2666-7762-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Development and validation of artificial intelligence models for early detection .pdf
  Restricted Access
Published version1.55 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.