Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45287
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDabas, Mai-
dc.contributor.authorKapp, Suzanne-
dc.contributor.authorGEFEN, Amit-
dc.date.accessioned2025-02-12T09:19:21Z-
dc.date.available2025-02-12T09:19:21Z-
dc.date.issued2025-
dc.date.submitted2025-02-10T10:55:18Z-
dc.identifier.citationAdvances in skin & wound care, 38 (1) , p. 31 -39-
dc.identifier.issn1527-7941-
dc.identifier.urihttp://hdl.handle.net/1942/45287-
dc.description.abstractOBJECTIVE: To develop a generalizable and accurate method for automatically analyzing wound images captured in clinical practice and extracting key wound characteristics such as surface area measurement. METHODS: The authors used image processing techniques to create a robust algorithm for segmenting pressure injuries from digital images captured by nurses during clinical practice. The algorithm also measured the real-world wound surface area. They used the hue-saturation-value color space to analyze red color values and to detect and segment the wound region within the entire image. To assess the accuracy of the algorithm's wound segmentation, the authors compared the results against wound image annotations. RESULTS: The algorithm performed impressively, achieving an intersection-over-union score of up to 0.85 and 100% intersection with the annotations. The algorithm effectively analyzed wound images obtained during clinical practice and accurately extracted the surface area of the documented pressure injuries. These results support the feasibility and applicability of this methodology. CONCLUSIONS: Accurate determination of wound size and healing supports decision-making regarding treatment and is essential to successful outcomes. This innovative approach for visual assessment of chronic wounds highlights the potential of computerized wound analysis in clinical practice. By leveraging advanced computational techniques, healthcare providers can gain valuable insights into wound progression, enabling more accurate assessments to support their decision-making.-
dc.description.sponsorshipVictorian Medical Research Acceleration Fund; Department of Nursing at-
dc.language.isoen-
dc.publisherLIPPINCOTT WILLIAMS & WILKINS-
dc.subject.otherartificial intelligence-
dc.subject.otherchronic wounds-
dc.subject.otherimage processing-
dc.subject.otherpressure injury-
dc.subject.otherprevention-
dc.subject.othervisual assessment-
dc.subject.otherwound evaluation-
dc.titleUtilizing Image Processing Techniques for Wound Management and Evaluation in Clinical Practice: Establishing the Feasibility of Implementing Artificial Intelligence in Routine Wound Care-
dc.typeJournal Contribution-
dc.identifier.epage39-
dc.identifier.issue1-
dc.identifier.spage31-
dc.identifier.volume38-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notesDabas, M (corresponding author), Tel Aviv Univ, Fac Engn, Dept Biomed Engn, Tel Aviv, Israel.-
dc.description.notesmaidabas@mail.tau.ac.il; suzanne.kapp@unimelb.edu.au;-
dc.description.notesgefen@tauex.tau.ac.il-
local.publisher.placeTWO COMMERCE SQ, 2001 MARKET ST, PHILADELPHIA, PA 19103 USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1097/ASW.0000000000000246-
dc.identifier.pmid39836554-
dc.identifier.isi001403027800004-
dc.contributor.orcidGefen, Amit/0000-0002-0223-7218-
dc.identifier.eissn1538-8654-
dc.identifier.eissn1538-8654-
local.provider.typewosris-
local.description.affiliation[Dabas, Mai] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, Tel Aviv, Israel.-
local.description.affiliation[Kapp, Suzanne] Univ Melbourne, Fac Med Dent & Hlth Sci, Sch Hlth Sci, Dept Nursing, Melbourne, Australia.-
local.description.affiliation[Kapp, Suzanne] Regis Aged Care, Wound Prevent & Management, Camberwell, Vic, Australia.-
local.description.affiliation[Gefen, Amit] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, Biomed Engn, Tel Aviv, Israel.-
local.description.affiliation[Gefen, Amit] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, Vasc Bioengn, Tel Aviv, Israel.-
local.description.affiliation[Gefen, Amit] Univ Ghent, Univ Ctr Nursing & Midwifery, Dept Publ Hlth & Primary Care, Skin Integr Res Grp SKINT, Ghent, Belgium.-
local.description.affiliation[Gefen, Amit] Hasselt Univ, Fac Sci, Dept Math & Stat, Hasselt, Belgium.-
local.description.affiliation[Gefen, Amit] Hasselt Univ, Data Sci Inst, Fac Sci, Hasselt, Belgium.-
local.uhasselt.internationalyes-
item.contributorDabas, Mai-
item.contributorKapp, Suzanne-
item.contributorGEFEN, Amit-
item.embargoEndDate2025-07-31-
item.fulltextWith Fulltext-
item.accessRightsEmbargoed Access-
item.fullcitationDabas, Mai; Kapp, Suzanne & GEFEN, Amit (2025) Utilizing Image Processing Techniques for Wound Management and Evaluation in Clinical Practice: Establishing the Feasibility of Implementing Artificial Intelligence in Routine Wound Care. In: Advances in skin & wound care, 38 (1) , p. 31 -39.-
crisitem.journal.issn1527-7941-
crisitem.journal.eissn1538-8654-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
ASWC_240240 31..39.pdf
  Restricted Access
Published version4.38 MBAdobe PDFView/Open    Request a copy
ACFrOgC2JlD.pdf
  Until 2025-07-31
Peer-reviewed author version941.79 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.