Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45288
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNAPOLES RUIZ, Gonzalo-
dc.contributor.authorGrau, Isel-
dc.contributor.authorCONCEPCION PEREZ, Leonardo-
dc.contributor.authorSalgueiro, Yamisleydi-
dc.contributor.authorVANHOOF, Koen-
dc.date.accessioned2025-02-12T09:51:52Z-
dc.date.available2025-02-12T09:51:52Z-
dc.date.issued2025-
dc.date.submitted2025-02-10T10:58:08Z-
dc.identifier.citationNeurocomputing, 623 (Art N° 129409)-
dc.identifier.urihttp://hdl.handle.net/1942/45288-
dc.description.abstractThis paper introduces a novel zero-data learning algorithm tailored for Fuzzy Cognitive Map (FCM) models utilized in control applications where we must maintain concepts' activation values within predefined intervals. Our approach allows domain experts to specify these intervals and optionally impose weight constraints, ensuring the algorithm produces feasible models. At the core of our approach lies a mathematical formalism that approximates the smallest feasible activation space for each neural concept, which translates into lower and upper bounds for concepts' activation values. Moreover, a parameterized quasi-nonlinear reasoning rule allows controlling whether or not the network converges to a unique fixed point. The learning goal of our algorithm narrows down to computing a weight matrix minimizing the error between the analytical bounds and the target intervals specified by domain experts. To address such a constrained minimization problem, we employ numerical methods operating with approximate gradients, which provide highly accurate solutions with short execution times. The main contribution of our learning algorithm is that it does not require any training data to compute the network structure. Therefore, by accurately approximating the specified activation intervals, our learning algorithm guarantees that the outputs produced by the FCM model will remain within these intervals regardless of the initial conditions used to start the recurrent reasoning process.-
dc.description.sponsorshipY. Salgueiro would like to acknowledge the support provided by ANID Fondecyt Regular 1240293 and Basal National Center for Artificial Intelligence CENIA FB210017. L. Concepción was supported by the Special Research Fund (BOF20BL04) from UHasselt, Belgium. Similarly, G. Nápoles would like to acknowledge the support received from the Special Research Fund (BOF24KV18) from UHasselt, Belgium.-
dc.language.isoen-
dc.publisherELSEVIER-
dc.rights2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.-
dc.titleLearning of Fuzzy Cognitive Map models without training data-
dc.typeJournal Contribution-
dc.identifier.volume623-
local.format.pages10-
local.bibliographicCitation.jcatA1-
dc.description.notesSalgueiro, Y (corresponding author), Univ Talca, Fac Engn, Dept Ind Technol, Campus Curico, Curico, Chile.-
dc.description.notesysalgueiro@utalca.cl-
local.publisher.placeRADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr129409-
dc.identifier.doi10.1016/j.neucom.2025.129409-
dc.identifier.isi001402696600001-
dc.contributor.orcidNapoles, Gonzalo/0000-0003-1936-3701-
local.provider.typewosris-
local.description.affiliation[Napoles, Gonzalo] Tilburg Univ, Dept Cognit Sci & Artificial Intelligence, Tilburg, Netherlands.-
local.description.affiliation[Napoles, Gonzalo; Concepcion, Leonardo; Vanhoof, Koen] UHasselt, Business Informat Res Grp, Hasselt, Belgium.-
local.description.affiliation[Grau, Isel] Eindhoven Univ Technol, Dept Ind Engn & Innovat Sci, Eindhoven, Netherlands.-
local.description.affiliation[Grau, Isel] Eindhoven Univ Technol, Eindhoven Artificial Intelligence Syst Inst, Eindhoven, Netherlands.-
local.description.affiliation[Concepcion, Leonardo] Univ Cent Las Villas,, Santa Clara, Cuba.-
local.description.affiliation[Salgueiro, Yamisleydi] Univ Talca, Fac Engn, Dept Ind Technol, Campus Curico, Curico, Chile.-
local.uhasselt.internationalyes-
item.contributorNAPOLES RUIZ, Gonzalo-
item.contributorGrau, Isel-
item.contributorCONCEPCION PEREZ, Leonardo-
item.contributorSalgueiro, Yamisleydi-
item.contributorVANHOOF, Koen-
item.embargoEndDate2025-09-28-
item.fulltextWith Fulltext-
item.accessRightsEmbargoed Access-
item.fullcitationNAPOLES RUIZ, Gonzalo; Grau, Isel; CONCEPCION PEREZ, Leonardo; Salgueiro, Yamisleydi & VANHOOF, Koen (2025) Learning of Fuzzy Cognitive Map models without training data. In: Neurocomputing, 623 (Art N° 129409).-
crisitem.journal.issn0925-2312-
crisitem.journal.eissn1872-8286-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Learning of Fuzzy Cognitive Map models without training data.pdf
  Restricted Access
Published version1.26 MBAdobe PDFView/Open    Request a copy
Learning_of_Fuzzy_Cognitive_Map_models_without_data.pdf
  Until 2025-09-28
Peer-reviewed author version481.98 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.