Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45296
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLENTJES, Bram-
dc.contributor.authorSpek, Len-
dc.contributor.authorBOSSCHAERT, Maikel M.-
dc.contributor.authorKuznetsov, Yuri A.-
dc.date.accessioned2025-02-12T14:44:12Z-
dc.date.available2025-02-12T14:44:12Z-
dc.date.issued2025-
dc.date.submitted2025-01-23T16:04:53Z-
dc.identifier.citationJournal of Differential Equations, 423 , p. 631 -694-
dc.identifier.issn0022-0396-
dc.identifier.urihttp://hdl.handle.net/1942/45296-
dc.description.abstractA recent work by the authors on the existence of a periodic smooth finite-dimensional center manifold near a nonhyperbolic cycle in delay differential equations motivates the derivation of periodic normal forms. In this paper, we prove the existence of a special coordinate system on the center manifold that will allow us to describe the local dynamics on the center manifold near the cycle in terms of these periodic normal forms. To construct the linear part of this coordinate system, we prove the existence of time periodic smooth Jordan chains for the original and adjoint system. Moreover, we establish duality and spectral relations between both systems by using tools from the theory of delay equations and Volterra integral equations, dual perturbation theory, duality theory and evolution semigroups.-
dc.description.sponsorshipThe authors express their sincere gratitude to Prof. Odo Diekmann (Utrecht University) for his invaluable recommendation to delve into the theory of evolution semigroups. The authors are thankful to Prof. Peter De Maesschalck (Hasselt University), Prof. Stephan van Gils (University of Twente) and Stein Meereboer (Radboud University) for helpful discussions and suggestions.-
dc.language.isoen-
dc.publisherElsevier-
dc.rights© 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.-
dc.subjectMathematics - Dynamical Systems-
dc.subjectMathematics - Dynamical Systems-
dc.subjectMathematics - Functional Analysis-
dc.subject34C20, 34K13, 34K17, 34K18, 34K19-
dc.subject.otherDelay differential equations-
dc.subject.otherSun-star calculus-
dc.subject.otherCenter manifold-
dc.subject.otherNormal forms-
dc.subject.otherJordan chains-
dc.subject.otherNonhyperbolic cycles-
dc.titlePeriodic normal forms for bifurcations of limit cycles in DDEs-
dc.typeJournal Contribution-
dc.identifier.epage694-
dc.identifier.spage631-
dc.identifier.volume423-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.1016/j.jde.2025.01.064-
dc.identifier.isi001407284900001-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.contributor.orcid#NODATA#-
dc.identifier.eissn1090-2732-
local.provider.typeOrcid-
local.uhasselt.internationalyes-
item.fullcitationLENTJES, Bram; Spek, Len; BOSSCHAERT, Maikel M. & Kuznetsov, Yuri A. (2025) Periodic normal forms for bifurcations of limit cycles in DDEs. In: Journal of Differential Equations, 423 , p. 631 -694.-
item.fulltextWith Fulltext-
item.contributorLENTJES, Bram-
item.contributorSpek, Len-
item.contributorBOSSCHAERT, Maikel M.-
item.contributorKuznetsov, Yuri A.-
item.accessRightsEmbargoed Access-
item.embargoEndDate2025-10-31-
crisitem.journal.issn0022-0396-
crisitem.journal.eissn1090-2732-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Periodic Normal Forms for Bifurcations of Limit Cycles in DDEs.pdf
  Until 2025-10-31
Peer-reviewed author version477.9 kBAdobe PDFView/Open    Request a copy
ad5e67ec-1c3c-4096-b963-34f460555641.tmp
  Restricted Access
Published version1.22 MBUnknownView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.