Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45351
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHenriksen, Margrethe Bang-
dc.contributor.authorVan Daalen, Florian-
dc.contributor.authorWee, Leonard-
dc.contributor.authorHansen, Torben Frostrup-
dc.contributor.authorJensen, Lars Henrik-
dc.contributor.authorBrasen, Claus Lohman-
dc.contributor.authorHilberg, Ole-
dc.contributor.authorBERMEJO DELGADO, Inigo-
dc.date.accessioned2025-02-19T09:55:06Z-
dc.date.available2025-02-19T09:55:06Z-
dc.date.issued2025-
dc.date.submitted2025-02-18T12:58:47Z-
dc.identifier.citationCancer Medicine, 14 (3) (Art N° e70458)-
dc.identifier.urihttp://hdl.handle.net/1942/45351-
dc.description.abstractBackgroundLung cancer (LC) is the top cause of cancer deaths globally, prompting many countries to adopt LC screening programs. While screening typically relies on age and smoking intensity, more efficient risk models exist. We devised a Bayesian network (BN) for LC detection, testing its resilience with varying degrees of missing data and comparing it to a prior machine learning (ML) model.MethodsWe analyzed data from 9940 patients referred for LC assessment in Southern Denmark from 2009 to 2018. Variables included age, sex, smoking, and lab results. Our experiments varied missing data (0%-30%), BN structure (expert-based vs. data-driven), and discretization method (standard vs. data-driven).ResultsAcross all missing data levels, area under the curve (AUC) remained steady, ranging from 0.737 to 0.757, compared to the ML model's AUC of 0.77. BN structure and discretization method had minimal impact on performance. BNs were well calibrated overall, with a net benefit in decision curve analysis when predicted risk exceeded 5%.ConclusionBN models showed resilience with up to 30% missing values. Moreover, these BNs exhibited similar performance, calibration, and clinical utility compared to the machine learning model developed using the same dataset. Considering their effectiveness in handling missing data, BNs emerge as a relevant method for the development of future lung cancer detection models.-
dc.description.sponsorshipThe project was funded by The Region of Southern Denmark, The University of Southern Denmark, The Dagmar Marshall Foundation, the Lilly and Herbert Hansen Foundation, the Hede Nielsen Family Foundation, The Beckett Foundation and The Danish National Research Center for Lung Cancer, and Danish Cancer Society (Grant R198-A14299). The funding sources did not participate in the data collection, analyses, or writing of the manuscript.-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2025 The Author(s). Cancer Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.-
dc.subject.otherHumans-
dc.subject.otherFemale-
dc.subject.otherMale-
dc.subject.otherDenmark-
dc.subject.otherMiddle Aged-
dc.subject.otherAged-
dc.subject.otherRetrospective Studies-
dc.subject.otherMachine Learning-
dc.subject.otherRisk Assessment-
dc.subject.otherRisk Factors-
dc.subject.otherLung Neoplasms-
dc.subject.otherBayes Theorem-
dc.subject.otherEarly Detection of Cancer-
dc.titleLung Cancer Detection Using Bayesian Networks: A Retrospective Development and Validation Study on a Danish Population of High-Risk Individuals-
dc.typeJournal Contribution-
dc.identifier.issue3-
dc.identifier.volume14-
local.format.pages14-
local.bibliographicCitation.jcatA1-
dc.description.notesHenriksen, MB (corresponding author), Vejle Univ Hosp, Dept Oncol, Vejle, Denmark.; Henriksen, MB (corresponding author), Univ Southern Denmark, Inst Reg Hlth Res, Odense, Denmark.-
dc.description.notesmargrethe.hostgaard.bang.henriksen@rsyd.dk-
local.publisher.place111 RIVER ST, HOBOKEN 07030-5774, NJ USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnre70458-
dc.identifier.doi10.1002/cam4.70458-
dc.identifier.pmid39887592-
dc.identifier.isi001410141800001-
dc.contributor.orcidWee, Leonard/0000-0003-1612-9055; Jensen, Lars-
dc.contributor.orcidHenrik/0000-0002-0020-1537; Hansen, Torben/0000-0001-7476-671X-
local.provider.typewosris-
local.description.affiliation[Henriksen, Margrethe Bang; Hansen, Torben Frostrup; Jensen, Lars Henrik] Vejle Univ Hosp, Dept Oncol, Vejle, Denmark.-
local.description.affiliation[Henriksen, Margrethe Bang; Hansen, Torben Frostrup; Brasen, Claus Lohman; Hilberg, Ole] Univ Southern Denmark, Inst Reg Hlth Res, Odense, Denmark.-
local.description.affiliation[Van Daalen, Florian; Wee, Leonard; Bermejo, Inigo] Maastricht Univ, Med Ctr, Dept Radiat Oncol MAASTRO, GROW Sch Oncol & Reprod, Maastricht, Netherlands.-
local.description.affiliation[Brasen, Claus Lohman] Vejle Univ Hosp, Dept Biochem & Immunol, Vejle, Denmark.-
local.description.affiliation[Hilberg, Ole] Vejle Univ Hosp, Dept Internal Med, Vejle, Denmark.-
local.description.affiliation[Bermejo, Inigo] Hasselt Univ, Data Sci Inst DSI, Hasselt, Belgium.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorHenriksen, Margrethe Bang-
item.contributorVan Daalen, Florian-
item.contributorWee, Leonard-
item.contributorHansen, Torben Frostrup-
item.contributorJensen, Lars Henrik-
item.contributorBrasen, Claus Lohman-
item.contributorHilberg, Ole-
item.contributorBERMEJO DELGADO, Inigo-
item.fullcitationHenriksen, Margrethe Bang; Van Daalen, Florian; Wee, Leonard; Hansen, Torben Frostrup; Jensen, Lars Henrik; Brasen, Claus Lohman; Hilberg, Ole & BERMEJO DELGADO, Inigo (2025) Lung Cancer Detection Using Bayesian Networks: A Retrospective Development and Validation Study on a Danish Population of High-Risk Individuals. In: Cancer Medicine, 14 (3) (Art N° e70458).-
item.accessRightsOpen Access-
crisitem.journal.issn2045-7634-
crisitem.journal.eissn2045-7634-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.