Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45413
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBYNENS, Lize-
dc.contributor.authorZhang, Kaishuai-
dc.contributor.authorCavassin, Priscila-
dc.contributor.authorGOOSSENS, Arwin-
dc.contributor.authorVANDERSPIKKEN, Jochen-
dc.contributor.authorCastillo, Tania C. H.-
dc.contributor.authorTsokkou, Demetra-
dc.contributor.authorMarks, Adam-
dc.contributor.authorMagni, Arianna-
dc.contributor.authorWeaver, Karrie-
dc.contributor.authorLUTSEN, Laurence-
dc.contributor.authorInal, Sahika-
dc.contributor.authorVANDEWAL, Koen-
dc.contributor.authorBanerji, Natalie-
dc.contributor.authorMAES, Wouter-
dc.date.accessioned2025-02-25T13:23:24Z-
dc.date.available2025-02-25T13:23:24Z-
dc.date.issued2025-
dc.date.submitted2025-02-24T14:42:46Z-
dc.identifier.citationAdvanced functional materials,-
dc.identifier.urihttp://hdl.handle.net/1942/45413-
dc.description.abstractOrganic electrochemical transistors (OECTs) feature a polymer channel capable of conducting both ions and electronic charges. The choice of the channel material is critical for OECT performance. Many efforts have focused on improving performance via the chemical tunability of conjugated polymers - through backbone, side chain, and molar mass engineering - leading to useful design principles for accumulation-mode OECT materials. However, tuning the chemical structure of conjugated polymers often requires time-consuming optimization of the synthesis route. Meanwhile, variations in molar mass, dispersity, structural defects, and metal content present challenges when attempting to analyze the detailed effects of structural modifications, as multiple performance-determining factors are often (unintentionally) changed at the same time. Therefore, this study explores blended channel materials obtained by physically mixing glycolated and alkoxylated polymers in different ratios, and compares their OECT performance with the corresponding statistical copolymers. It is shown that mixing two well-performing materials creates blends that enable rational tuning of the transistor properties without compromising on performance. Thus, channels based on blends of alkoxylated and glycolated polymers hold promise for OECT technology with tailored response, as only two materials are needed to achieve any desired side chain ratio, simplifying the optimization of OECT characteristics.-
dc.description.sponsorshipThis project received funding from the European Union’s Horizon 2020 Research and Innovation Program under grant agreement no. 964677 (MITICS). W.M., K.V., L.B., J.V., and A.G. thank the FWO Vlaanderen for financial support (WEAVE project G025922N and Ph.D. grants 1S70122N and 1S50820N). K.Z., N.B., and D.T. acknowledge the Swiss National Science Foundation (grant 200021E_205216) and the University of Bern for funding. We also thank O. Bardagot for helpful discussions on OECT measurements and data analysis. Use of the Stanford Synchrotron Radiation Light source, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515.-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.rights2025 Wiley-VCH GmbH-
dc.subject.othercopolymerization-
dc.subject.otherglycol and alkoxy side chains-
dc.subject.otherorganic electrochemical transistors-
dc.subject.otherpolymer blends-
dc.subject.othersemiconducting polymers-
dc.titleOrganic Electrochemical Transistor Channel Materials: Copolymerization Versus Physical Mixing of Glycolated and Alkoxylated Polymers-
dc.typeJournal Contribution-
local.format.pages14-
local.bibliographicCitation.jcatA1-
dc.description.notesMaes, W (corresponding author), Hasselt Univ, Inst Mat Res Imo Imomec, Design & Synth Organ Semicond DSOS, Martelarenlaan 42, B-3500 Hasselt, Belgium.; Maes, W (corresponding author), Imec, Imo Imomec, Wetenschapspk 1, B-3590 Diepenbeek, Belgium.; Banerji, N (corresponding author), Univ Bern, Dept Chem Biochem & Pharmaceut Sci, Freiestr 3, CH-3012 Bern, Switzerland.-
dc.description.notesnatalie.banerji@unibe.ch; wouter.maes@uhasselt.be-
local.publisher.placePOSTFACH 101161, 69451 WEINHEIM, GERMANY-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
local.type.programmeH2020-
local.relation.h2020964677-
dc.identifier.doi10.1002/adfm.202423913-
dc.identifier.isi001415739200001-
dc.contributor.orcidinal, Sahika/0000-0002-1166-1512-
local.provider.typewosris-
local.description.affiliation[Bynens, Lize; Vanderspikken, Jochen; Lutsen, Laurence; Maes, Wouter] Hasselt Univ, Inst Mat Res Imo Imomec, Design & Synth Organ Semicond DSOS, Martelarenlaan 42, B-3500 Hasselt, Belgium.-
local.description.affiliation[Bynens, Lize; Goossens, Arwin; Vanderspikken, Jochen; Lutsen, Laurence; Vandewal, Koen; Maes, Wouter] Imec, Imo Imomec, Wetenschapspk 1, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Zhang, Kaishuai; Cavassin, Priscila; Tsokkou, Demetra; Banerji, Natalie] Univ Bern, Dept Chem Biochem & Pharmaceut Sci, Freiestr 3, CH-3012 Bern, Switzerland.-
local.description.affiliation[Goossens, Arwin; Vandewal, Koen] Hasselt Univ, Inst Mat Res Imo Imomec, Organ Optoelect OOE, Martelarenlaan 42, B-3500 Hasselt, Belgium.-
local.description.affiliation[Castillo, Tania C. H.; Inal, Sahika] King Abdullah Univ Sci & Technol KAUST, Biol & Environm Sci & Engn Div, Organ Bioelect Lab, Thuwal 239556900, Saudi Arabia.-
local.description.affiliation[Marks, Adam; Magni, Arianna; Weaver, Karrie] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA.-
local.uhasselt.internationalyes-
item.contributorBYNENS, Lize-
item.contributorZhang, Kaishuai-
item.contributorCavassin, Priscila-
item.contributorGOOSSENS, Arwin-
item.contributorVANDERSPIKKEN, Jochen-
item.contributorCastillo, Tania C. H.-
item.contributorTsokkou, Demetra-
item.contributorMarks, Adam-
item.contributorMagni, Arianna-
item.contributorWeaver, Karrie-
item.contributorLUTSEN, Laurence-
item.contributorInal, Sahika-
item.contributorVANDEWAL, Koen-
item.contributorBanerji, Natalie-
item.contributorMAES, Wouter-
item.fullcitationBYNENS, Lize; Zhang, Kaishuai; Cavassin, Priscila; GOOSSENS, Arwin; VANDERSPIKKEN, Jochen; Castillo, Tania C. H.; Tsokkou, Demetra; Marks, Adam; Magni, Arianna; Weaver, Karrie; LUTSEN, Laurence; Inal, Sahika; VANDEWAL, Koen; Banerji, Natalie & MAES, Wouter (2025) Organic Electrochemical Transistor Channel Materials: Copolymerization Versus Physical Mixing of Glycolated and Alkoxylated Polymers. In: Advanced functional materials,.-
item.embargoEndDate2025-08-07-
item.fulltextWith Fulltext-
item.accessRightsEmbargoed Access-
crisitem.journal.issn1616-301X-
crisitem.journal.eissn1616-3028-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Organic Electrochemical Transistor Channel Materials_ Copolymerization Versus Physical Mixing of Glycolated and Alkoxylated Polymers.pdf
  Restricted Access
Early view2.96 MBAdobe PDFView/Open    Request a copy
Blend project_Revised_v2.pdf
  Until 2025-08-07
Peer-reviewed author version1.21 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.