Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45588
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDe Witte , Dries-
dc.contributor.authorALONSO ABAD, Ariel-
dc.contributor.authorStephenson, Diane-
dc.contributor.authorKarten, Yashmin-
dc.contributor.authorLeuzy, Antoine-
dc.contributor.authorKlein , Gregory-
dc.contributor.authorMOLENBERGHS, Geert-
dc.date.accessioned2025-03-11T07:45:22Z-
dc.date.available2025-03-11T07:45:22Z-
dc.date.issued2025-
dc.date.submitted2025-03-06T13:24:19Z-
dc.identifier.citationPharmaceutical statistics, 24 (2) (Art N° e70003)-
dc.identifier.urihttp://hdl.handle.net/1942/45588-
dc.description.abstractIn clinical trials, surrogate endpoints, that are more cost-effective, occur earlier, or are more frequently measured, are sometimes used to replace costly, late, or rare true endpoints. Regulatory authorities typically require thorough evaluation and validation to accept these surrogate endpoints as reliable substitutes. To this end, the meta-analytic framework is considered a very viable approach to validate surrogates at both trial and individual levels. However, this framework requires data from multiple trials or centers, posing challenges when data sharing is not feasible. In this article, we propose a federated data analysis approach that allows organizations to maintain control over their datasets while still enabling surrogate validation through meta-analytic techniques. In this approach, there is no longer a need for raw data sharing. Instead, independent analyses are conducted at each organization. Thereafter, the results of these independent analyses are aggregated at a central analysis hub and the metrics for surrogate evaluation are extracted. We apply this approach to simulated and real clinical data, demonstrating how this federated approach can overcome data-sharing constraints and validate surrogate endpoints in decentralized settings.-
dc.language.isoen-
dc.publisherWILEY-
dc.rights2025 John Wiley & Sons Ltd.-
dc.subject.otherfederated data-
dc.subject.othermeta-analytic framework-
dc.subject.othersurrogacy-
dc.titleA Federated Data Analysis Approach for the Evaluation of Surrogate Endpoints-
dc.typeJournal Contribution-
dc.identifier.issue2-
dc.identifier.volume24-
local.format.pages8-
local.bibliographicCitation.jcatA1-
dc.description.notesDe Witte, D (corresponding author), Katholieke Univ Leuven, L BioStat, Leuven, Belgium.-
dc.description.notesdries.dewitte@kuleuven.be-
local.publisher.place111 RIVER ST, HOBOKEN 07030-5774, NJ USA-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnre70003-
dc.identifier.doi10.1002/pst.70003-
dc.identifier.pmid40000152-
dc.identifier.isi001431150700001-
local.provider.typewosris-
local.description.affiliation[De Witte, Dries; Abad, Ariel Alonso; Molenberghs, Geert] Katholieke Univ Leuven, L BioStat, Leuven, Belgium.-
local.description.affiliation[Abad, Ariel Alonso; Molenberghs, Geert] Hasselt Univ, I BioStat, Diepenbeek, Belgium.-
local.description.affiliation[Stephenson, Diane; Karten, Yashmin; Leuzy, Antoine] Crit Path Inst, Crit Path Alzheimers Dis CPAD Consortium, Tucson, AZ USA.-
local.description.affiliation[Leuzy, Antoine] Lund Univ, Clin Memory Res, Lund, Sweden.-
local.description.affiliation[Klein, Gregory] F Hoffmann La Roche Ltd, Basel, Switzerland.-
local.uhasselt.internationalyes-
item.fulltextWith Fulltext-
item.contributorDe Witte , Dries-
item.contributorALONSO ABAD, Ariel-
item.contributorStephenson, Diane-
item.contributorKarten, Yashmin-
item.contributorLeuzy, Antoine-
item.contributorKlein , Gregory-
item.contributorMOLENBERGHS, Geert-
item.fullcitationDe Witte , Dries; ALONSO ABAD, Ariel; Stephenson, Diane; Karten, Yashmin; Leuzy, Antoine; Klein , Gregory & MOLENBERGHS, Geert (2025) A Federated Data Analysis Approach for the Evaluation of Surrogate Endpoints. In: Pharmaceutical statistics, 24 (2) (Art N° e70003).-
item.accessRightsRestricted Access-
crisitem.journal.issn1539-1604-
crisitem.journal.eissn1539-1612-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
Pharmaceutical Statistics - 2025 - De Witte - A Federated Data Analysis Approach for the Evaluation of Surrogate Endpoints.pdf
  Restricted Access
Published version343.33 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.