Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/45627
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Syukrilla, Wara Alfa | - |
dc.contributor.author | ANDRIYANA, Yudhie | - |
dc.contributor.author | VERHASSELT, Anneleen | - |
dc.date.accessioned | 2025-03-12T09:41:02Z | - |
dc.date.available | 2025-03-12T09:41:02Z | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2025-02-27T21:06:41Z | - |
dc.identifier.citation | Journal of Statistical Application and Computational Statistics, 15 (2) , p. 31 -42 | - |
dc.identifier.uri | http://hdl.handle.net/1942/45627 | - |
dc.description.abstract | Abstrak Penelitian ini menyelidiki pengaruh persentase akses air bersih, persentase kebiasaan mencuci tangan, dan kategorisasi toilet sehat pada kuantil atas risiko diare balita di Kota Bandung, Indonesia, menggunakan model Geographically Weighted Quantile Regression pada persentil ke-75 (τ = 0,75). Bandwidth optimal dipilih menggunakan validasi silang. Hasil penelitian menunjukkan bahwa signifikansi, kekuatan, dan arah hubungan antara diare dan faktor risikonya tergantung pada lokasinya. Pada kuantil atas τ = 0,75 Kecamatan Panyileukan diprediksi memiliki risiko diare tertinggi. Di kabupaten ini, ketiga prediktor berpengaruh signifikan terhadap risiko diare pada balita, dengan variabel persentase rumah yang mempraktikkan kebiasaan cuci tangan adalah variabel paling besar pengaruhnya dalam menurunkan risiko diare. Kesimpulannya, akses air bersih, kebiasaan cuci tangan, dan kategori toilet merupakan faktor risiko potensial terjadinya diare pada anak risiko tinggi. Metode GWQR memungkinkan pembuat keputusan untuk menangani masalah diare dengan tepat berdasarkan prediktor mana yang memiliki pengaruh besar pada daerah tertentu yang diminati. Selain itu, GWQR dapat digunakan untuk menyelidiki efek dari berbagai strategi intervensi dan secara efektif mengalokasikan sumber daya terbatas yang tersedia sesuai lokasi yang paling membutuhkannya. Abstract We investigate the impact of the percentage of clean water access, the percentage of handwashing habits, and the toilet category factors on the upper quantile of toddlers' diarrhea risks in Bandung City, Indonesia, using the Geographically Weighted Quantile Regression model on the 75th percentile (τ=0.75). The optimum bandwidth was selected using cross-validation. The results show that the significance, strength, and direction of the relationship between diarrhea and its risk factors depend on the location. At the upper quantile τ = 0.75, the Panyileukan district is predicted to have the highest diarrhea risk. In this district, all three predictors significantly affect the toddlers' diarrhea risk, with the variable of the percentage of houses practicing hand washing habits observed to reduce diarrhea risk the most. In conclusion, clean water access, handwashing habits, and toilet category are the potential risk factors for high-risk childhood diarrhea. This method is powerful as it would allow the decision-maker to handle the diarrhea problem aptly by focusing on the predictor that has a significant impact on a particular district of interest. And it can be used to investigate the effect of various intervention strategies and effectively allocate the limited available resources according to the most important locations. | - |
dc.language.iso | en | - |
dc.subject.other | Kata Kunci: Geographically Weighted Quantile Regression | - |
dc.subject.other | balita | - |
dc.subject.other | diare Keywords: Geographically Weighted Quantile Regression | - |
dc.subject.other | toddlers | - |
dc.subject.other | diarrhea | - |
dc.title | Unveiling spatial disparities: exploring high-risk diarhea among children under five using geographically weighted quantile regression | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 42 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 31 | - |
dc.identifier.volume | 15 | - |
local.bibliographicCitation.jcat | A2 | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.34123/jurnalasks.v15i2.536 | - |
local.provider.type | CrossRef | - |
local.uhasselt.international | yes | - |
item.accessRights | Open Access | - |
item.fullcitation | Syukrilla, Wara Alfa; ANDRIYANA, Yudhie & VERHASSELT, Anneleen (2023) Unveiling spatial disparities: exploring high-risk diarhea among children under five using geographically weighted quantile regression. In: Journal of Statistical Application and Computational Statistics, 15 (2) , p. 31 -42. | - |
item.contributor | Syukrilla, Wara Alfa | - |
item.contributor | ANDRIYANA, Yudhie | - |
item.contributor | VERHASSELT, Anneleen | - |
item.fulltext | With Fulltext | - |
crisitem.journal.issn | 2086-4132 | - |
crisitem.journal.eissn | 2615-1367 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
3+31-42+536+V15.2.12.2023+Jurnal+ASKS.pdf | Published version | 639.53 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.