Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45724
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJIA, Huan-
dc.contributor.authorHu, Naihong-
dc.contributor.authorXiong, Rongchuan-
dc.contributor.authorZHANG, Yinhuo-
dc.date.accessioned2025-03-26T09:43:50Z-
dc.date.available2025-03-26T09:43:50Z-
dc.date.issued2023-
dc.date.submitted2025-03-24T22:35:54Z-
dc.identifier.citationBulletin of the Belgian Mathematical Society-simon Stevin, 30 (5) , p. 634 -667-
dc.identifier.urihttp://hdl.handle.net/1942/45724-
dc.description.abstractLet $\mathbb{K}$ be a field. We study the free bialgebra $\mathcal{T}$ generated by the coalgebra $C=\mathbb{K} g\oplus \mathbb{K} h$ and its quotient bialgebras (or Hopf algebras) over $\mathbb{K}$. We show that the free noncommutative Fa\`a di Bruno bialgebra is a sub-bialgebra of $\mathcal{T}$, and the quotient bialgebra $\overline{\mathcal{T}}:=\mathcal{T}/(E_{\alpha}|~\alpha(g)\ge 2)$ is an Ore extension of the well-known Fa\`a di Bruno bialgebra. The image of the free noncommutative Fa\`a di Bruno bialgebra in the quotient $\overline{\mathcal{T}}$ gives a more reasonable non-commutative version of the commutative Fa\`a di Bruno bialgebra from the PBW basis point view. If char$\mathbb{K}=p>0$, we obtain a chain of quotient Hopf algebras of $\overline{\mathcal{T}}$: $\overline{\mathcal{T}}\twoheadrightarrow \Tt_{n}\twoheadrightarrow \overline{\mathcal{T}}_{n}'(p)\twoheadrightarrow \overline{\mathcal{T}}_{n}(p)\twoheadrightarrow \overline{\mathcal{T}}_{n}(p;d_{1}) \twoheadrightarrow\ldots \twoheadrightarrow \overline{\mathcal{T}}_{n}(p;d_{j},d_{j-1},\ldots,d_{1})\twoheadrightarrow \ldots \twoheadrightarrow \overline{\mathcal{T}}_{n}(p;d_{p-2},d_{p-3},\ldots,d_{1})$ with finite GK-dimensions. Furthermore, we study the homological properties and the coradical filtrations of those quotient Hopf algebras.-
dc.language.isoen-
dc.publisher-
dc.rights2023 The Belgian Mathematical Society-
dc.subject.otherFaà di Bruno Hopf algebra-
dc.subject.otherGK-dimension-
dc.subject.otherLyndon-Shirshov basis-
dc.subject.otherpointed Hopf algebras-
dc.subject.othershuffle type polynomials-
dc.titleQuotient Hopf algebras of the free bialgebra with PBW bases and GK-dimensions-
dc.typeJournal Contribution-
dc.identifier.epage667-
dc.identifier.issue5-
dc.identifier.spage634-
dc.identifier.volume30-
local.bibliographicCitation.jcatA1-
local.contributor.corpauthorNaihong Hu, Rongchuan Xiong and Yinhuo Zhang-
local.type.refereedRefereed-
local.type.specifiedArticle-
dc.identifier.doi10.36045/j.bbms.230408-
local.provider.typeCrossRef-
local.uhasselt.internationalyes-
item.contributorJIA, Huan-
item.contributorHu, Naihong-
item.contributorXiong, Rongchuan-
item.contributorZHANG, Yinhuo-
item.fullcitationJIA, Huan; Hu, Naihong; Xiong, Rongchuan & ZHANG, Yinhuo (2023) Quotient Hopf algebras of the free bialgebra with PBW bases and GK-dimensions. In: Bulletin of the Belgian Mathematical Society-simon Stevin, 30 (5) , p. 634 -667.-
item.accessRightsClosed Access-
item.fulltextNo Fulltext-
crisitem.journal.issn1370-1444-
crisitem.journal.eissn2034-1970-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.