Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/45724
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | JIA, Huan | - |
dc.contributor.author | Hu, Naihong | - |
dc.contributor.author | Xiong, Rongchuan | - |
dc.contributor.author | ZHANG, Yinhuo | - |
dc.date.accessioned | 2025-03-26T09:43:50Z | - |
dc.date.available | 2025-03-26T09:43:50Z | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2025-03-24T22:35:54Z | - |
dc.identifier.citation | Bulletin of the Belgian Mathematical Society-simon Stevin, 30 (5) , p. 634 -667 | - |
dc.identifier.uri | http://hdl.handle.net/1942/45724 | - |
dc.description.abstract | Let $\mathbb{K}$ be a field. We study the free bialgebra $\mathcal{T}$ generated by the coalgebra $C=\mathbb{K} g\oplus \mathbb{K} h$ and its quotient bialgebras (or Hopf algebras) over $\mathbb{K}$. We show that the free noncommutative Fa\`a di Bruno bialgebra is a sub-bialgebra of $\mathcal{T}$, and the quotient bialgebra $\overline{\mathcal{T}}:=\mathcal{T}/(E_{\alpha}|~\alpha(g)\ge 2)$ is an Ore extension of the well-known Fa\`a di Bruno bialgebra. The image of the free noncommutative Fa\`a di Bruno bialgebra in the quotient $\overline{\mathcal{T}}$ gives a more reasonable non-commutative version of the commutative Fa\`a di Bruno bialgebra from the PBW basis point view. If char$\mathbb{K}=p>0$, we obtain a chain of quotient Hopf algebras of $\overline{\mathcal{T}}$: $\overline{\mathcal{T}}\twoheadrightarrow \Tt_{n}\twoheadrightarrow \overline{\mathcal{T}}_{n}'(p)\twoheadrightarrow \overline{\mathcal{T}}_{n}(p)\twoheadrightarrow \overline{\mathcal{T}}_{n}(p;d_{1}) \twoheadrightarrow\ldots \twoheadrightarrow \overline{\mathcal{T}}_{n}(p;d_{j},d_{j-1},\ldots,d_{1})\twoheadrightarrow \ldots \twoheadrightarrow \overline{\mathcal{T}}_{n}(p;d_{p-2},d_{p-3},\ldots,d_{1})$ with finite GK-dimensions. Furthermore, we study the homological properties and the coradical filtrations of those quotient Hopf algebras. | - |
dc.language.iso | en | - |
dc.publisher | - | |
dc.rights | 2023 The Belgian Mathematical Society | - |
dc.subject.other | Faà di Bruno Hopf algebra | - |
dc.subject.other | GK-dimension | - |
dc.subject.other | Lyndon-Shirshov basis | - |
dc.subject.other | pointed Hopf algebras | - |
dc.subject.other | shuffle type polynomials | - |
dc.title | Quotient Hopf algebras of the free bialgebra with PBW bases and GK-dimensions | - |
dc.type | Journal Contribution | - |
dc.identifier.epage | 667 | - |
dc.identifier.issue | 5 | - |
dc.identifier.spage | 634 | - |
dc.identifier.volume | 30 | - |
local.bibliographicCitation.jcat | A1 | - |
local.contributor.corpauthor | Naihong Hu, Rongchuan Xiong and Yinhuo Zhang | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
dc.identifier.doi | 10.36045/j.bbms.230408 | - |
local.provider.type | CrossRef | - |
local.uhasselt.international | yes | - |
item.contributor | JIA, Huan | - |
item.contributor | Hu, Naihong | - |
item.contributor | Xiong, Rongchuan | - |
item.contributor | ZHANG, Yinhuo | - |
item.fullcitation | JIA, Huan; Hu, Naihong; Xiong, Rongchuan & ZHANG, Yinhuo (2023) Quotient Hopf algebras of the free bialgebra with PBW bases and GK-dimensions. In: Bulletin of the Belgian Mathematical Society-simon Stevin, 30 (5) , p. 634 -667. | - |
item.accessRights | Closed Access | - |
item.fulltext | No Fulltext | - |
crisitem.journal.issn | 1370-1444 | - |
crisitem.journal.eissn | 2034-1970 | - |
Appears in Collections: | Research publications |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.