Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45726
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJIA, Huan-
dc.contributor.authorZHANG, Yinhuo-
dc.date.accessioned2025-03-26T09:52:31Z-
dc.date.available2025-03-26T09:52:31Z-
dc.date.issued2025-
dc.date.submitted2025-03-24T23:43:42Z-
dc.identifier.citationProceeding of American Mathematical society,-
dc.identifier.urihttp://hdl.handle.net/1942/45726-
dc.description.abstractIn this note, we show that every Noetherian graded ring with an affine degree zero part is affine. As a result, a Noetherian graded Hopf algebra whose degree zero component is a commutative or a cocommutative Hopf subalgebra is affine. Moreover, we show that the braided Hopf algebra of a Noetherian graded Hopf algebra is affine.-
dc.language.isoen-
dc.subject.othergraded ring-
dc.subject.othergraded Hopf algebra-
dc.subject.otherbraided Hopf algebra-
dc.subject.othernoetherian-
dc.subject.otheraffine-
dc.titleAffineness on Noetherian graded rings, algebras and Hopf algebras-
dc.typeJournal Contribution-
local.bibliographicCitation.jcatA3-
local.type.refereedNon-Refereed-
local.type.specifiedArticle-
local.bibliographicCitation.statusEarly view-
local.provider.typePdf-
local.uhasselt.internationalyes-
item.contributorJIA, Huan-
item.contributorZHANG, Yinhuo-
item.fullcitationJIA, Huan & ZHANG, Yinhuo (2025) Affineness on Noetherian graded rings, algebras and Hopf algebras. In: Proceeding of American Mathematical society,.-
item.accessRightsClosed Access-
item.fulltextWith Fulltext-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
arxive_2503.12268v1.pdf
  Restricted Access
Non Peer-reviewed author version106.78 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.