Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/4574
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCalders, Toon-
dc.contributor.authorGOETHALS, Bart-
dc.contributor.authorPrado, Adriana-
dc.date.accessioned2007-12-20T15:50:43Z-
dc.date.available2007-12-20T15:50:43Z-
dc.date.issued2006-
dc.identifier.citationKnowledge Discovery in Databases: PKDD 2006. p. 454-461-
dc.identifier.isbn978-3-540-45374-1-
dc.identifier.issn0302-9743-
dc.identifier.urihttp://hdl.handle.net/1942/4574-
dc.description.abstractAlmost a decade ago, Imielinski and Mannila introduced the notion of Inductive Databases to manage KDD applications just as DBMSs successfully manage business applications. The goal is to follow one of the key DBMS paradigms: building optimizing compilers for ad hoc queries. During the past decade, several researchers proposed extensions to the popular relational query language, SQL, in order to express such mining queries. In this paper, we propose a completely different and new approach, which extends the DBMS itself, not the query language, and integrates the mining algorithms into the database query optimizer. To this end, we introduce virtual mining views, which can be queried as if they were traditional relational tables (or views). Every time the database system accesses one of these virtual mining views, a mining algorithm is triggered to materialize all tuples needed to answer the query. We show how this can be done effectively for the popular association rule and frequent set mining problems.-
dc.language.isoen-
dc.publisherBerlin Springer-Verlag 2006-
dc.relation.ispartofseriesLecture Notes in Computer Science-
dc.titleIntegrating pattern mining in relational databases-
dc.typeJournal Contribution-
dc.identifier.epage461-
dc.identifier.spage454-
local.bibliographicCitation.jcatA1-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.relation.ispartofseriesnr4213-
dc.bibliographicCitation.oldjcatA1-
dc.identifier.doi10.1007/11871637_43-
dc.identifier.isi000241104900038-
item.fulltextNo Fulltext-
item.accessRightsClosed Access-
item.contributorCalders, Toon-
item.contributorGOETHALS, Bart-
item.contributorPrado, Adriana-
item.fullcitationCalders, Toon; GOETHALS, Bart & Prado, Adriana (2006) Integrating pattern mining in relational databases. In: Knowledge Discovery in Databases: PKDD 2006. p. 454-461.-
crisitem.journal.issn0302-9743-
Appears in Collections:Research publications
Show simple item record

WEB OF SCIENCETM
Citations

10
checked on Jun 29, 2022

Page view(s)

54
checked on May 20, 2022

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.