Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45792
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAHMED, Muhammad Waqas-
dc.contributor.authorADNAN, Muhammad-
dc.contributor.authorAhmed, Muhammad-
dc.contributor.authorJANSSENS, Davy-
dc.contributor.authorWETS, Geert-
dc.contributor.authorAhmed, Afzal-
dc.contributor.authorECTORS, Wim-
dc.date.accessioned2025-04-02T07:16:34Z-
dc.date.available2025-04-02T07:16:34Z-
dc.date.issued2025-
dc.date.submitted2025-03-19T14:05:00Z-
dc.identifier.citationElsevier, p. 201 -208-
dc.identifier.issn2352-1465-
dc.identifier.urihttp://hdl.handle.net/1942/45792-
dc.description.abstractIn today’s world, privacy is becoming a major concern, especially with the use of drones for surveillance and recreational purposes. This paper presents a novel approach to privacy protection in UAV live-streaming by introducing an automated video blurring system that operates in near real-time, replacing time-consuming operations in the post-processing stage. Our method leverages the Scale Invariant Feature Transform algorithm to match live footage with a pre-constructed aerial template image, enabling the blurring of private properties in near real-time, allowing our UAV greater freedom of mobility whilst preserving the privacy of residents at ground level. This solution aligns with the EU’s General Data Protection Regulation (GDPR), balancing utility and privacy rights. This proposed framework has the potential to significantly aid the UAV industry by providing a practical tool for privacy preservation during aerial surveys and recreation drone flights.-
dc.description.sponsorshipThe authors express their sincerest gratitude to the BOF/BILA program of UHasselt for funding this research.-
dc.language.isoen-
dc.publisherElsevier-
dc.rights2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the Smart Mobility and Logistics Ecosystems-
dc.subject.otherUAV-
dc.subject.otherdrone-
dc.subject.otherprivacy-
dc.subject.otherGDPR-
dc.subject.otherSIFT-
dc.subject.otherreal-time-
dc.titleNear Real-time Privacy Protection: Automated Location-dependent Video Blurring in UAV live-streams-
dc.typeProceedings Paper-
local.bibliographicCitation.conferencedate2024, September 17-19-
local.bibliographicCitation.conferencenameThe 1st International Conference on Smart Mobility and Logistics Ecosystems (SMiLE)-
local.bibliographicCitation.conferenceplaceKFUPM, Saudi Arabia-
dc.identifier.epage208-
dc.identifier.spage201-
dc.identifier.volume84-
local.bibliographicCitation.jcatC1-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
dc.identifier.doi10.1016/j.trpro.2025.03.064-
dc.identifier.eissn-
local.provider.typeCrossRef-
local.uhasselt.internationalyes-
item.contributorAHMED, Muhammad Waqas-
item.contributorADNAN, Muhammad-
item.contributorAhmed, Muhammad-
item.contributorJANSSENS, Davy-
item.contributorWETS, Geert-
item.contributorAhmed, Afzal-
item.contributorECTORS, Wim-
item.fullcitationAHMED, Muhammad Waqas; ADNAN, Muhammad; Ahmed, Muhammad; JANSSENS, Davy; WETS, Geert; Ahmed, Afzal & ECTORS, Wim (2025) Near Real-time Privacy Protection: Automated Location-dependent Video Blurring in UAV live-streams. In: Elsevier, p. 201 -208.-
item.fulltextWith Fulltext-
item.accessRightsClosed Access-
crisitem.journal.issn2352-1457-
Appears in Collections:Research publications
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.