Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45798
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSattler, Rebecca-
dc.contributor.authorKLEEST-MEISSNER, Sarah-
dc.contributor.authorLange, Steven-
dc.contributor.authorSchmid, Markus L.-
dc.contributor.authorSchweikardt, Nicole-
dc.contributor.authorWeidlich, Matthias-
dc.date.accessioned2025-04-02T09:11:58Z-
dc.date.available2025-04-02T09:11:58Z-
dc.date.issued2025-
dc.date.submitted2025-03-14T16:04:42Z-
dc.identifier.citationKlettke, Meike; Schenkel, Ralf; Heinrich, Andreas; Nicklas, Daniela; Schülle, Maximilian E. (Ed.). Datenbanksysteme für Business, Technologie und Web (BTW 2025), Gesellschaft für Informatik e.V., p. 417 -437 (Art N° 19)-
dc.identifier.issn2944-7682-
dc.identifier.urihttp://hdl.handle.net/1942/45798-
dc.description.abstractIn complex event processing (CEP), queries are evaluated continuously over streams of events to detect situations of interest, thereby facilitating reactive applications. However, users often lack insights into the precise event pattern that characterizes the situation, which renders the definition of the respective queries challenging. Once a database of finite, historic streams, each containing a materialization of the situation of interest, is available, query discovery supports users in the definition of the desired queries. It constructs the queries that match a certain share of the given streams, as determined by a support threshold. Yet, upon changes in the database or changes of the support threshold, existing algorithms need to construct the resulting queries from scratch, neglecting the queries obtained in previous runs. In this paper, we aim to avoid the resulting inefficiencies by techniques for incremental query discovery. We first provide a theoretical analysis of the problem context, before presenting algorithmic solutions to cope with changes in the stream database or the adopted support threshold. Our experiments using real-world data show that our incremental query discovery reduces the runtimes by up to three orders of magnitude compared to a baseline solution.-
dc.description.sponsorshipSupported by the German Research Foundation (DFG), CRC 1404: “FONDA: Foundation of Workflows for Large-Scale Scientific Data Analysis”-
dc.language.isoen-
dc.publisherGesellschaft für Informatik e.V.-
dc.relation.ispartofseriesLecture Notes in Informatics-
dc.subject.otherComplex Event Processing-
dc.subject.otherEvent Streams-
dc.subject.otherQuery Discovery-
dc.subject.otherIncremental Updates-
dc.titleEmbracing Change: Incremental Updates of Discovered Event Queries-
dc.typeProceedings Paper-
local.bibliographicCitation.authorsKlettke, Meike-
local.bibliographicCitation.authorsSchenkel, Ralf-
local.bibliographicCitation.authorsHeinrich, Andreas-
local.bibliographicCitation.authorsNicklas, Daniela-
local.bibliographicCitation.authorsSchülle, Maximilian E.-
local.bibliographicCitation.conferencedate03.-07, März 2025-
local.bibliographicCitation.conferencenameDatenbanksysteme für Business, Technologie und Web (BTW 2025)-
local.bibliographicCitation.conferenceplaceBamberg, Germany-
dc.identifier.epage437-
dc.identifier.spage417-
dc.identifier.volumeP-361-
local.format.pages20-
local.bibliographicCitation.jcatC1-
dc.relation.references[Ar14] Artikis, Alexander; Weidlich, Matthias; Schnitzler, François; Boutsis, Ioannis; Liebig, Thomas; Piatkowski, Nico; Bockermann, Christian; Morik, Katharina; Kalogeraki, Vana; Marecek, Jakub; Gal, Avigdor; Mannor, Shie; Gunopulos, Dimitrios; Kinane, Dermot: Heterogeneous Stream Processing and Crowdsourcing for Urban Traffic Management. In (Amer-Yahia, Sihem; Christophides, Vassilis; Kementsietsidis, Anastasios; Garofalakis, Minos N.; Idreos, Stratos; Leroy, Vincent, eds): Proceedings of the 17th International Conference on Extending Database Technology, EDBT 2014, Athens, Greece, March 24-28, 2014. OpenProceedings.org, pp. 712–723, 2014. [CA12] Cugola, Gianpaolo; Alessandro: Processing flows of information: From data stream to complex event processing. ACM Comput. Surv., 44(3):15:1–15:62, 2012. [Ch10] Chandramouli, Badrish; Ali, Mohamed H.; Goldstein, Jonathan; Sezgin, Beysim; Raman, Balan Sethu: Data Stream Management Systems for Computational Finance. Computer, 43(12):45–52, 2010. [DBF20] Drozdyuk, Andriy; Buffett, Scott; Fleming, Michael W.: Incremental Sequential Rule Mining with Streaming Input Traces. In (Goutte, Cyril; Zhu, Xiaodan, eds): Advances in Artificial Intelligence. Springer International Publishing, Cham, pp. 79–91, 2020. [EO15] EODData: NASDAQ Intra-Day Data. https://eoddata.com/, 2015. Accessed: 2015-09-27. [Fo14] Fournier-Viger, Philippe; Gueniche, Ted; Zida, Souleymane; Tseng, Vincent S.: ERMiner: Sequential Rule Mining Using Equivalence Classes. In (Blockeel, Hendrik; van Leeuwen, Matthijs; Vinciotti, Veronica, eds): Advances in Intelligent Data Analysis XIII. Springer International Publishing, Cham, pp. 108–119, 2014. [FVNT11] Fournier-Viger, Philippe; Nkambou, Roger; Tseng, Vincent Shin-Mu: RuleGrowth: mining sequential rules common to several sequences by pattern-growth. In: Proceedings of the 2011 ACM symposium on applied computing. pp. 956–961, 2011. [GCW16] George, Lars; Cadonna, Bruno; Weidlich, Matthias: IL-Miner: Instance-Level Discovery of Complex Event Patterns. Proc. VLDB Endow., 10(1):25–36, September 2016. [Gi20] Giatrakos, Nikos; Alevizos, Elias; Artikis, Alexander; Deligiannakis, Antonios; Garofalakis, Minos N.: Complex event recognition in the Big Data era: a survey. VLDB J., 29(1):313–352, 2020. [KL19] Konovalenko, Iurii; Ludwig, André: Event processing in supply chain management - The status quo and research outlook. Comput. Ind., 105:229–249, 2019. [Kl22] Kleest-Meißner, Sarah; Sattler, Rebecca; Schmid, Markus L.; Schweikardt, Nicole; Weidlich, Matthias: Discovering Event Queries from Traces: Laying Foundations for Subsequence-Queries with Wildcards and Gap-Size Constraints. In (Olteanu, Dan; Vortmeier, Nils, eds): 25th International Conference on Database Theory, ICDT 2022, March 29 to April 1, 2022, Edinburgh, UK (Virtual Conference). volume 220 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 18:1–18:21, 2022. [Kl23] Kleest-Meißner, Sarah; Sattler, Rebecca; Schmid, Markus L.; Schweikardt, Nicole; Weidlich, Matthias: Discovering Multi-Dimensional Subsequence Queries from Traces - From Theory to Practice. In (König-Ries, Birgitta; Scherzinger, Stefanie; Lehner, Wolfgang; Vossen, Gottfried, eds): Datenbanksysteme für Business, Technologie und Web (BTW 2023), 20. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme"(DBIS), 06.-10, März 2023, Dresden, Germany, Proceedings. volume P-331 of LNI. Gesellschaft für Informatik e.V., pp. 511–533, 2023. [MCT14] Margara, Alessandro; Cugola, Gianpaolo; Tamburrelli, Giordano: Learning from the Past: Automated Rule Generation for Complex Event Processing. In: Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems. DEBS ’14, Association for Computing Machinery, New York, NY, USA, p. 47–58, 2014. [MGG13] Mallick, Bhawna; Garg, Deepak; Grover, P. S.: Incremental Mining of Sequential Patterns: Progress and Challenges. Intelligent Data Analysis, 17(3):507–530, January 2013. [Re12] Reiss, Charles; Tumanov, Alexey; Ganger, Gregory R; Katz, Randy H; Kozuch, Michael A: Towards understanding heterogeneous clouds at scale: Google trace analysis. Intel Science and Technology Center for Cloud Computing, Tech. Rep, 84:1–12, 2012. [RWH11] Reiss, Charles; Wilkes, John; Hellerstein, Joseph L: Google cluster-usage traces: format+schema. Google Inc., White Paper, 1:1–14, 2011. [YR15] Yun, Unil; Ryang, Heungmo: Incremental High Utility Pattern Mining with Static and Dynamic Databases. Applied Intelligence, 42(2):323–352, March 2015. [ZDI14] Zhang, Haopeng; Diao, Yanlei; Immerman, Neil: On complexity and optimization of expensive queries in complex event processing. In (Dyreson, Curtis E.; Li, Feifei; Özsu, M. Tamer, eds): International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014. ACM, pp. 217–228, 2014. [Zh02] Zheng, Qingguo; Xu, Ke; Ma, Shilong; Lv, Weifeng: The Algorithms of Updating Sequetial Patterns, 2002. [ZXM03] Zheng, Qingguo; Xu, Ke; Ma, Shilong: When to Update the Sequential Patterns of Stream Data? In (Whang, Kyu-Young; Jeon, Jongwoo; Shim, Kyuseok; Srivastava, Jaideep, eds): Advances in Knowledge Discovery and Data Mining, 7th Pacific-Asia Conference, PAKDD 2003, Seoul, Korea, April 30 - May 2, 2003, Proceedings. volume 2637 of Lecture Notes in Computer Science. Springer, pp. 545–550, 2003.-
local.type.refereedRefereed-
local.type.specifiedProceedings Paper-
local.relation.ispartofseriesnrP-361-
local.bibliographicCitation.artnr19-
dc.identifier.doi10.18420/BTW2025-19-
dc.identifier.urlhttps://dl.gi.de/handle/20.500.12116/45882-
local.provider.typePdf-
local.bibliographicCitation.btitleDatenbanksysteme für Business, Technologie und Web (BTW 2025)-
local.uhasselt.internationalyes-
local.contributor.datacreatorSattler, Rebecca-
local.contributor.datacreatorKleest-Meißner, Sarah-
local.contributor.datacreatorLange, Steven-
local.contributor.datacreatorSchmid, Markus L.-
local.contributor.datacreatorSchweikardt, Nicole-
local.contributor.datacreatorWeidlich, Matthias-
item.fulltextWith Fulltext-
item.embargoEndDate2025-10-02-
item.fullcitationSattler, Rebecca; KLEEST-MEISSNER, Sarah; Lange, Steven; Schmid, Markus L.; Schweikardt, Nicole & Weidlich, MatthiasSattler, Rebecca; Kleest-Meißner, Sarah; Lange, Steven; Schmid, Markus L.; Schweikardt, Nicole & Weidlich, Matthias (2025) Embracing Change: Incremental Updates of Discovered Event Queries. Klettke, Meike; Schenkel, Ralf; Heinrich, Andreas; Nicklas, Daniela; Schülle, Maximilian E. (Ed.). Datenbanksysteme für Business, Technologie und Web (BTW 2025), Gesellschaft für Informatik e.V., p. 417 -437 (Art N° 19).-
item.contributorSattler, Rebecca-
item.contributorKLEEST-MEISSNER, Sarah-
item.contributorLange, Steven-
item.contributorSchmid, Markus L.-
item.contributorSchweikardt, Nicole-
item.contributorWeidlich, Matthias-
item.contributorKleest-Meißner, Sarah-
item.accessRightsEmbargoed Access-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
BTW2025-19.pdf
  Restricted Access
Published version342.05 kBAdobe PDFView/Open    Request a copy
BTW2025-EmbracingChange-AuthorsVersion.pdf
  Until 2025-10-02
Peer-reviewed author version579.24 kBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.