Please use this identifier to cite or link to this item:
http://hdl.handle.net/1942/45823
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Stijven, Florian | - |
dc.contributor.author | Tran , Trung Dung | - |
dc.contributor.author | Driessen, Ellen | - |
dc.contributor.author | Abad, Ariel Alonso | - |
dc.contributor.author | MOLENBERGHS, Geert | - |
dc.contributor.author | VERBEKE, Geert | - |
dc.contributor.author | Van Mechelen, Iven | - |
dc.date.accessioned | 2025-04-07T09:54:46Z | - |
dc.date.available | 2025-04-07T09:54:46Z | - |
dc.date.issued | 2025 | - |
dc.date.submitted | 2025-04-03T12:25:38Z | - |
dc.identifier.citation | Biometrics, 81 (1) (Art N° ujaf026) | - |
dc.identifier.uri | http://hdl.handle.net/1942/45823 | - |
dc.description.abstract | An important aspect of precision medicine is the tailoring of treatments to specific patient types. Nowadays, various methods are available to estimate for this purpose so-called optimal treatment regimes, that is, decision rules for treatment assignment that map patterns of pretreatment characteristics to treatment alternatives and that maximize the expected patient benefit. However, the application of these methods to real-life data has been limited and comes with nonstandard statistical issues. In search of best practices, we reanalyzed data from a randomized clinical trial for the treatment of dysthymic disorder. While the original objective of this trial was to detect a marginally best treatment alternative, we wanted to estimate an optimal treatment regime using 2 prominent estimation methods: Q-learning and value search estimation. An important obstacle in the dataset under study was the occurrence of missing values. This was handled with multiple imputation, a thoughtful implementation of which, however, implied several challenges. Other challenges were implied by the concrete implementation of value search estimation. In this paper, all the choices we have made in the analysis to handle the aforementioned issues are detailed together with a motivation and a description of possible alternatives. Accordingly, this paper may serve as a guide to apply optimal treatment regime estimation in data-analytic practice. | - |
dc.description.sponsorship | This research was supported by the Research Foundation Flanders (G080219N). F.S. received funding from the Agentschap Innoveren & Ondernemen and Janssen Pharmaceutica (HBC.2022.0145). E.D. received funding from the Dutch Research Council (016.Veni.195.215 6806). The computational resources used in this work were provided by the Flemish Supercomputer Center, funded by the Research Foundation Flanders and the Flemish Government. | - |
dc.language.iso | en | - |
dc.publisher | OXFORD UNIV PRESS | - |
dc.rights | The Author(s) 2025. Published by Oxford University Press on behalf of The International Biometric Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com | - |
dc.subject.other | multiple imputation | - |
dc.subject.other | optimal treatment regimes | - |
dc.subject.other | Q-learning | - |
dc.subject.other | randomized clinical trial | - |
dc.subject.other | value search estimation | - |
dc.title | Optimal treatment regime estimation in practice: challenges and choices in a randomized clinical trial for depression | - |
dc.type | Journal Contribution | - |
dc.identifier.issue | 1 | - |
dc.identifier.volume | 81 | - |
local.format.pages | 12 | - |
local.bibliographicCitation.jcat | A1 | - |
dc.description.notes | Stijven, F (corresponding author), Katholieke Univ Leuven, I BioStat, B-3000 Leuven, Belgium. | - |
dc.description.notes | florian.stijven@kuleuven.be | - |
local.publisher.place | GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND | - |
local.type.refereed | Refereed | - |
local.type.specified | Article | - |
local.bibliographicCitation.artnr | ujaf026 | - |
dc.identifier.doi | 10.1093/biomtc/ujaf026 | - |
dc.identifier.pmid | 40110706 | - |
dc.identifier.isi | 001447665700001 | - |
local.provider.type | wosris | - |
local.description.affiliation | [Stijven, Florian; Abad, Ariel Alonso; Molenberghs, Geert] Katholieke Univ Leuven, I BioStat, B-3000 Leuven, Belgium. | - |
local.description.affiliation | [Tran, Trung Dung; Van Mechelen, Iven] Katholieke Univ Leuven, Fac Psychol & Educ Sci, B-3000 Leuven, Belgium. | - |
local.description.affiliation | [Driessen, Ellen] Radboud Univ Nijmegen, Behav Sci Inst, NL-6500 HE Nijmegen, Netherlands. | - |
local.description.affiliation | [Driessen, Ellen] Pro Persona Mental Hlth Care, Depress Expertise Ctr, NL-6525 DX Nijmegen, Netherlands. | - |
local.description.affiliation | [Molenberghs, Geert; Verbeke, Geert] Univ Hasselt, I BioStat, B-3500 Hasselt, Belgium. | - |
local.uhasselt.international | yes | - |
item.contributor | Stijven, Florian | - |
item.contributor | Tran , Trung Dung | - |
item.contributor | Driessen, Ellen | - |
item.contributor | Abad, Ariel Alonso | - |
item.contributor | MOLENBERGHS, Geert | - |
item.contributor | VERBEKE, Geert | - |
item.contributor | Van Mechelen, Iven | - |
item.fulltext | With Fulltext | - |
item.accessRights | Restricted Access | - |
item.fullcitation | Stijven, Florian; Tran , Trung Dung; Driessen, Ellen; Abad, Ariel Alonso; MOLENBERGHS, Geert; VERBEKE, Geert & Van Mechelen, Iven (2025) Optimal treatment regime estimation in practice: challenges and choices in a randomized clinical trial for depression. In: Biometrics, 81 (1) (Art N° ujaf026). | - |
crisitem.journal.issn | 0006-341X | - |
crisitem.journal.eissn | 1541-0420 | - |
Appears in Collections: | Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
317939.pdf Restricted Access | Published version | 1.26 MB | Adobe PDF | View/Open Request a copy |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.