Please use this identifier to cite or link to this item: http://hdl.handle.net/1942/45825
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWagner, Isabella-
dc.contributor.authorVAN GOMPEL, Wouter-
dc.contributor.authorERKENS, Robin-
dc.contributor.authorRUTTENS, Bart-
dc.contributor.authorChang, Sheng Hsiung-
dc.contributor.authorLUTSEN, Laurence-
dc.contributor.authorVANDERZANDE, Dirk-
dc.contributor.authorHume, Paul A.-
dc.contributor.authorChuang , Chern-
dc.contributor.authorD'HAEN, Jan-
dc.contributor.authorPrice, Michael B.-
dc.contributor.authorGeiregat, Pieter-
dc.contributor.authorHodgkiss, Justin M.-
dc.contributor.authorChen, Kai-
dc.date.accessioned2025-04-07T11:20:47Z-
dc.date.available2025-04-07T11:20:47Z-
dc.date.issued2025-
dc.date.submitted2025-04-03T13:36:46Z-
dc.identifier.citationAdvanced Materials, 37(19), Art N° 2419674-
dc.identifier.urihttp://hdl.handle.net/1942/45825-
dc.description.abstractQuasi-2D (Q2D) perovskite possess considerable potential for light emission and amplification technologies. Recently, mixed films containing Q2D perovskite grains with varying layer thicknesses have shown great promise as carrier concentrators, effectively mitigating trap-mediated recombination. In this strategy, photo-excitations are rapidly funnelled down an energy gradient to the thickest grains, leading to amplified spontaneous emission (ASE). However, the quantum-confined Q2D slabs also stabilize the formation of unwanted triplet excitons, resulting in parasitic quenching of emissive singlet states. Here, a novel ultrafast photoluminescence spectroscopy is used to study photoexcitation dynamics in mixed-layer Q2D perovskites. By analysing spectra with high temporal and energy resolution, this is found that sub-picosecond energy transfer to ASE sites is accompanied by excitation losses due to triplet formation on grains with small and intermediate thicknesses. Further accumulation of triplets creates a bottleneck in the energy cascade, effectively quenching incoming singlet excitons. This ultrafast annihilation within 200 femtosecond outpaces energy transfer to ASE sites, preventing the build-up of population inversion. This study highlights the significance of investigating photoexcitation dynamics on ultrafast timescales, encompassing lasing dynamics, energy transfer, and singlet-triplet annihilation, to gain crucial insights into the photophysics of the optical gain process in Q2D perovskites.-
dc.description.sponsorshipI.W. and K.C. acknowledge support from the Marsden Fund (17-VUW-154 and MFP-VUW2307), Royal Society of New Zealand. W.T.M.V.G.,L.L., P.G. and D.V. acknowledge the FWO for the funding of the SBOproject PROCEED (FWOS002019N) and the senior FWO research projectG043320N. P.G. acknowledges funding from FWO Vlaanderen through Re-search projects INTRIQATE (G0C5723N) & HITEC (G037221N). R.E. ac-knowledges the FWO for the funding of his personal FWO-SB Ph.D. fel-lowship (1SB3725N)-
dc.language.isoen-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.rights2025 Wiley-VCH GmbH-
dc.subject.otherexciton dynamics-
dc.subject.otherlasing mechanisms-
dc.subject.otherPerovskitesquasi-2D perovskites-
dc.subject.otherultrafast photoluminescence spectroscopy-
dc.titleCritical Roles of Ultrafast Energy Funnelling and Ultrafast Singlet-Triplet Annihilation in Quasi-2D Perovskite Optical Gain Mechanisms-
dc.typeJournal Contribution-
dc.identifier.issue19-
dc.identifier.volume37-
local.format.pages9-
local.bibliographicCitation.jcatA1-
dc.description.notesHodgkiss, JM; Chen, K (corresponding author), MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6012, New Zealand.; Hodgkiss, JM (corresponding author), Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington 6012, New Zealand.; Chen, K (corresponding author), Dodd Walls Ctr Photon & Quantum Technol, Dunedin 9016, New Zealand.; Chen, K (corresponding author), Victoria Univ Wellington, Robinson Res Inst, Wellington 5010, New Zealand.-
dc.description.notesJustin.Hodgkiss@vuw.ac.nz; Kai.Chen@vuw.ac.nz-
local.publisher.placePOSTFACH 101161, 69451 WEINHEIM, GERMANY-
local.type.refereedRefereed-
local.type.specifiedArticle-
local.bibliographicCitation.artnr2419674-
dc.identifier.doi10.1002/adma.202419674-
dc.identifier.pmid40130712-
dc.identifier.isi001451495300001-
dc.contributor.orcidErkens, Robin/0000-0002-7960-1276-
local.provider.typewosris-
local.description.affiliation[Wagner, Isabella; Hume, Paul A.; Price, Michael B.; Hodgkiss, Justin M.; Chen, Kai] MacDiarmid Inst Adv Mat & Nanotechnol, Wellington 6012, New Zealand.-
local.description.affiliation[Wagner, Isabella; Hume, Paul A.; Price, Michael B.; Hodgkiss, Justin M.] Victoria Univ Wellington, Sch Chem & Phys Sci, Wellington 6012, New Zealand.-
local.description.affiliation[Van Gompel, Wouter T. M.; Erkens, Robin; Lutsen, Laurence; Vanderzande, Dirk] Hasselt Univ, Inst Mat Res IMO, Hybrid Mat Design HyMaD, B-3500 Hasselt, Belgium.-
local.description.affiliation[Ruttens, Bart; D'Haen, Jan; Lutsen, Laurence; Vanderzande, Dirk] Imec, Associated Lab IMOMEC, Wetenschapspk 1, B-3590 Diepenbeek, Belgium.-
local.description.affiliation[Chuang, Chern] Univ Nevada, Dept Chem & Biochem, 4505 S Maryland Pkwy, Las Vegas, NV 89154 USA.-
local.description.affiliation[Chang, Sheng Hsiung] Chung Yuan Christian Univ, Dept Phys, Taoyuan 320314, Taiwan.-
local.description.affiliation[Price, Michael B.] UNIV BRISTOL, SCH CHEM, BRISTOL BS8 1TS, England.-
local.description.affiliation[Geiregat, Pieter] Univ Ghent, Phys & Chem Nanostruct, B-9000 Ghent, Belgium.-
local.description.affiliation[Geiregat, Pieter] Univ Ghent, NoLIMITS Ctr Nonlinear Microscopy & Spect, B-9000 Ghent, Belgium.-
local.description.affiliation[Chen, Kai] Dodd Walls Ctr Photon & Quantum Technol, Dunedin 9016, New Zealand.-
local.description.affiliation[Chen, Kai] Victoria Univ Wellington, Robinson Res Inst, Wellington 5010, New Zealand.-
local.uhasselt.internationalyes-
item.contributorWagner, Isabella-
item.contributorVAN GOMPEL, Wouter-
item.contributorERKENS, Robin-
item.contributorRUTTENS, Bart-
item.contributorChang, Sheng Hsiung-
item.contributorLUTSEN, Laurence-
item.contributorVANDERZANDE, Dirk-
item.contributorHume, Paul A.-
item.contributorChuang , Chern-
item.contributorD'HAEN, Jan-
item.contributorPrice, Michael B.-
item.contributorGeiregat, Pieter-
item.contributorHodgkiss, Justin M.-
item.contributorChen, Kai-
item.fullcitationWagner, Isabella; VAN GOMPEL, Wouter; ERKENS, Robin; RUTTENS, Bart; Chang, Sheng Hsiung; LUTSEN, Laurence; VANDERZANDE, Dirk; Hume, Paul A.; Chuang , Chern; D'HAEN, Jan; Price, Michael B.; Geiregat, Pieter; Hodgkiss, Justin M. & Chen, Kai (2025) Critical Roles of Ultrafast Energy Funnelling and Ultrafast Singlet-Triplet Annihilation in Quasi-2D Perovskite Optical Gain Mechanisms. In: Advanced Materials, 37(19), Art N° 2419674.-
item.embargoEndDate2025-09-25-
item.fulltextWith Fulltext-
item.accessRightsEmbargoed Access-
crisitem.journal.issn0935-9648-
crisitem.journal.eissn1521-4095-
Appears in Collections:Research publications
Files in This Item:
File Description SizeFormat 
adma.202419674 pdf.pdf
  Until 2025-09-25
Peer-reviewed author version1.62 MBAdobe PDFView/Open    Request a copy
Advanced Materials - 2025 - Wagner - Critical Roles of Ultrafast Energy Funnelling and Ultrafast Singlet‐Triplet.pdf
  Restricted Access
Published version1.08 MBAdobe PDFView/Open    Request a copy
Show simple item record

Google ScholarTM

Check

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.